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Abstract: This paper proposes an integrated approach utilizing Fuzzy Logic and Decision Tree algorithms to diagnose early-stage faults 

in power transformers based on Dissolved Gas Analysis (DGA) test results of transformer insulation oil. Overcoming limitations in 

conventional methods such as Duval Triangle, Key Gas Analysis, Rogers Ratio, IEC Ratio, and Doernenburg Ratio, our Fuzzy Logic 

and Decision Tree models address issues like inaccurate diagnosis, inconsistent diagnosis, lack of decisions or out-of-code results, and 

time-intensive manual calculations for large DGA datasets. The Decision Tree algorithm, a machine learning technique is applied to 

categorize faults into thermal and electrical types. Trained with over 300 DGA samples from transformers with known faults, the models 

exhibit robust performance during testing with different datasets. Notably, the Duval Triangle decision tree model attains the highest 

accuracy among the ten developed models, achieving a 98% accuracy rate when tested with 50 samples with known faults. Moreover, 

Decision Tree models for KGA, Doernenburg, Rogers, and IEC also demonstrate substantial prediction accuracy at 92%, 86%, 92%, 

and 90% respectively underscoring the efficacy of artificial intelligence methods over traditional approaches. 

 

Keywords: Dissolved Gas Analysis, Decision Tree, Fuzzy Logic, Membership Function, Incipient Faults, Conventional Methods. 

 
1. INTRODUCTION 

Power transformers play a crucial role in power systems by enabling efficient long-distance power transmission with 

minimal losses [1]. Operational failures in transformers can result in inconvenience for consumers and economic losses. 

Swift detection of incipient faults in transformers is essential for scheduling preventive maintenance. Common faults such 

as thermal, arcing, and electrical discharge issues lead to contamination or deterioration of the transformer's insulation 

paper and mineral oil [8] often due to aging or bad operating conditions. Various diagnostic methods including Partial 

Discharge Measurements, Frequency Response Analysis, Furan Analysis, Thermal Monitoring, Dissolved Gas Analysis 

and Capacitance Measurement are available. Among these, Dissolved Gas Analysis (DGA) is widely recognized as the 

most suitable for fault detection in oil-filled electrical equipment. It measures the concentration of dissolved gases in 

mineral oil. DGA reveals potential issues through the detection of gases like CO, CH4, H2, C2H4, CO2, C2H2, and C2H6 

which result from the molecular decomposition of transformer oil and insulation paper [1]. DGA provides early warnings, 

diagnoses and actionable insights by assessing internal conditions. Forces inside the transformer such as thermal, electrical 

and mechanical stresses lead to the evolution of gases that dissolve in the oil. DGA detects individual gas concentrations in 

parts per million (ppm) allowing for analysis, diagnosis, and fault identification [9]. One challenge in DGA is interpreting 

Gas Chromatographic results. Conventional methods like Key Gas Analysis (KGA) calculate total dissolved combustible 

gases and rely on preset rules and standard tables for fault identification. For instance, high hydrogen gas (H2) percentages 

indicate partial discharge (Table 1). However, traditional methods are unreliable, may yield inconsistent results and involve 

time-consuming manual calculations. This work introduces advanced methodologies including Fuzzy Logic and Decision 

Tree techniques to enhance reliability and speed in power transformer fault detection using DGA. 

DRM employs six gases and four ratios as specified in Table 2 for diagnosing thermal and electrical faults. The 

diagnostic procedure entails confirming that the concentration of at least one fault gas in a ratio surpasses the required L1 

concentration limit [1], [10]. As a concentration ratio method its conventional version may yield inconsistent diagnoses 

when compared to other ratio methods due to variations in ratio ranges. Therefore, there is a necessity to formulate an 

artificial intelligence model for enhanced accuracy. 
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Table 1: Empirical diagnostic table for KGA method. 

Fault Key Gas Quantity of Fault Gas 

Thermal fault in Oil C2H4 High percentage of Ethylene gas, noticeable amount of Ethane gas 

Thermal fault in Cellulose CO Mainly Carbon monoxide gas 

Partial discharge or corona H2 High percentage of Hydrogen, trace amount of Methane 

Arcing C2H2  and H2 Mainly Acetylene and Hydrogen gases 

 

Table 2: Doernenburg ratio method 

Fault DRM1= 

CH4/H2 

DRM2= 

C2H2/C2H4 

DRM3= C2H2/CH4 DRM4= 

C2H6/C2H2 Arcing 0.1<DRM1<1.0 DRM2>0.75 DRM3>0.3 DRM4<0.4 

Partial Discharge DRM1<1.0 Negligible DRM3<0.3 DRM4>0.4 

Thermal Faults DRM1>1.0 DRM2<0.75 DRM3<0.3 DRM4>0.4 

Source: [13] 

Similar to DRM, Roger's Ratio Method (RRM) utilizes ratios for fault diagnosis, emphasizing specific ranges over 

absolute concentrations of fault gases. The DGA analysis involves two tables: one for code definition and the other for 

fault detection rules. Consult Table 3 and Table 4 for the applicable code and fault detection rules in DGA analysis using 

Roger's Ratio Method. The traditional version of RRM may occasionally fail to provide a diagnosis decision due to 

incomplete code combinations in Table 4. This issue arises from the incomplete ratio range for each code in Table 3 

attributed to its crisp nature. Consequently, there is a necessity to explore the benefits of fuzzy logic by incorporating 

fuzzification of the ranges. 

Table 3: Code definition for Rogers ratio method 

Gas Ratio Ratio Range Code 

RG1=  

CH4/H2    

RG1<0.1 5 

0.1≤RG1≤1 0 

1≤RG1≤3 1 

RG1>3 2 

RG2= 

C2H6/CH4 

RG2<1 0 

RG2≥1 1 

RG3= 

C2H4/C2H6 

RG3<1 0 

1≤RG3≤3 1 

RG3>3 2 

RG4= 

C2H2/C2H4 

RG4<0.1 0 

0.1≤RG4≤3 1 

RG4>3 2 

Source: [3] 

 

Table 4: Rogers fault diagnosis table 

RG1 RG2 RG3 RG4 Detected Faults 

0 0 0 0 Normal 

5 0 0 0 Partial 

Discharge (PD) 

1 or 2 0 0 0 Thermal<150C 

1 or 2 1 0 0 Thermal 150-200C 

0 1 0 0 Thermal 200-300C 

0 0 1 0 Excessively 

Heated Winding 

1 0 1 0 Confined current in Winding 

1 0 2 0 Confined current in core & tank 

0 0 0 1 Low 

intensity discharge 
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Table 4: Rogers fault diagnosis table (cont’d) 

RG1 RG2 RG3 RG4 Detected Faults 

0 0 1 or 2 1 or 2  Arcing 

0 0 2 2 Floating 

Potential Sparking 

5 0 0 1 or 2 Tracking 

Partial discharge 

Source: [3] 

 

The IEC Ratio Method which is based on the International Electrotechnical Commission Standard 60599 [5] improves 

the Rogers ratio method by eliminating the Ethane/Methane concentration ratio due to its temperature sensitivity within a 

limited range of decomposition [11]. This method, derived from the Rogers ratio method, omits the C2H6/CH4 ratio which 

has been shown to represent a limited temperature range of decomposition potentially leading to inaccurate, no-decision or 

out-of-code diagnoses. 

 

Table 5: IEC ratio codes 

Concentration Ratios Range Code 

IEC1= C2H2/C2H4 = R1 

IEC1<0.1 

0.1≤ IEC1≤3.0 

IEC1>3.0 

0 

1 

2 

IEC2=CH4/H2 = R2 

IEC2<0.1 

0.1≤ IEC2≤1.0 

IEC2>1.0 

1 

0 

2 

IEC3=C2H4/C2H6 = R3 

IEC3<1.0 

1.0≤ IEC3≤3.0 

IEC3>3.0 

0 

1 

2 

Source: [5] 

 

Table 6:  IEC fault diagnosis table 

R1 R2 R3 Diagnosed faults 

0 0 0 No fault 

0 1 0 Low Intensity Corona 

1 1 0 High Intensity Corona 

1or 2 0 1or 2 Sparking 

1 0 2 Arcing 

0 0 1 Overheating<150°C 

0 2 0 Overheating 150-300 °C 

0 2 1 Overheating 300-700°C 

0 2 2 Overheating>700°C 

Source: [5] 

 

The Duval Triangle Method utilizes graphical representation in Dissolved Gas Analysis (DGA) for early detection of 

faults in transformers. Acetylene (C2H2), methane (CH4) and ethylene (C2H4) percentage concentrations are represented on 

the three sides of a triangle, calculated based on the gas proportions in the mixture. Figure 1 illustrates this method in DGA 

analysis presenting seven fault zones. Compared to ratio-based approaches, the Duval Triangle Method demonstrates 

superior precision in fault detection in power transformers. However, being a graphical interpretation method it can be 

time-consuming for a large number of transformers necessitating the development of its AI model.  

This study shows that applying Decision Tree to the Duval triangle method can create an effective AI model capable of 

detecting all known incipient faults in power transformers like electrical, thermal and discharges with higher sensitivity 
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and accurate precision. Also, the decision tree models outperforming its fuzzy logic counterparts for all the five 

conventional methods as seen in Table 13. Similarly, in the household of the Fuzzy Logic, Fuzzy Duval Triangle is the 

most effective model in the detection of electrical faults like arcing and sparking and also thermal faults of different 

temperature range while other fuzzy models are effective in detecting thermal faults. To this end, one can reliably use the 

output of the fuzzy models in their respective area of good fault detection and sensitivity to further train the decision tree 

models, being a machine learning technique that relies on good training data for 100% accuracy in the long run. 

 

 

 
Figure 1: Duval triangle fault zones. Source: [12] 

 

In the following sections, the methodologies through which the models were developed are discussed for a few of the 

conventional methods. The models were tested with 50 DGA dataset with known faults and run on a CORE i5 10TH GEN 

Laptop computer. The results obtained were tabulated and presented graphically. For each fault condition, a model’s 

precision and recall were calculated and discussed. Conclusions were then drawn from the results and recommendations 

were made. 

2. METHODOLOGY 

In this study, fuzzy logic and decision tree models were implemented for each of the five conventional methods. 

Decision tree is a machine learning approach based on a supervised learning. 

2.1 Fuzzy Logic Method Overview 

Fuzzy logic is employed for incipient fault characterization due to its capability to manage uncertainty and imprecision, 
allows continuous output between 0 and 1 based on input values. The methodology is implemented using MATLAB's 

fuzzy logic toolbox and utilizes low, medium, and high membership functions for seven gases. Input variables are fuzzified 

and a rule base is established with the output representing the fault condition. The final output is obtained through center-

of-gravity (COG) defuzzification. 

2.2 Fuzzy Logic for IEC Method 

The Simulink circuit for the IEC Method (Figure 2) includes gas concentrations in parts per million (ppm) for five gases 

CH4, H2, C2H6, C2H2 and C2H4 obtained after carrying out DGA test on a suspected faulty transformer’s oil sample which 

serves as input for the Simulink circuit and processed through dividers and a Bus selector according to Table 5 rules. The 

resulting values serve as input for the fuzzy logic system, and the output display provides values based on defined rules 

and membership functions. According to Table 7, the fault condition inside the transformer is ‘Sparking’ which has value 

range of 2.8, 3, and 3.2. This technique employs three input membership functions represented by variables R1 to R3, with 

fault conditions defined as the output membership function. In the fuzzy logic system, three inputs and one output are 
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specified. Refer to Table 7 for details on the membership functions assigned to the input and output variables, where L 

stands for low, M is medium and H is high. 

 

 
Figure 2: MATLAB simulink of IEC method 

 

Table 7: Membership functions for IEC method 

Inputs Membership Functions Range 

R1 

L [-10 0 0.1] 

M [0.1 1.5 3] 

H [2.95 3.1 50] 

R2 

L [0.1 0.5 1] 

M [-100 0   0.1] 

H [0.95 1.1 50] 

R3 

L [-100 0.9 1.1] 

M [1 2 3] 

H [2.95 3.1 50] 

Output 

Normal [0.8 1 1.2] 

Partial Discharge [1.8 2 2.2] 

Sparking [2.8 3 3.2] 

Arcing [3.8 4 4.2] 

Thermal Fault (<150C) [4.8 5 5.2] 

Thermal Fault 150 - 300C) [5.8 6 6.2] 

Thermal Fault  (>300C) [6.8 7 7.2] 

 

The plots for the membership functions of inputs R1 and R2 of IEC method are given in Figure 3 and 4. 

 

 
L M H 

[-10 0 0.1] [0.1 1.5 3] [2.95 3.1 50] 

Figure 3: Membership function of R1 in IEC method 
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L M H 

[0.1 0.5 1] [-100 0 0.1] [0.95 1.1 50] 

Figure 4: Membership function of R2 in IEC method 

 

 
Normal [0.8 1 1.2] 

Partial Discharge [1.8 2 2.2] 

Sparking [2.8 3 3.2] 

Arcing [3.8 4 4.2] 

Thermal Fault (<150C) [4.8 5 5.2] 

Thermal Fault 150 - 300C) [5.8 6 6.2] 

Thermal Fault (>300C) [6.8 7 7.2] 

Figure 5: Membership Function of output variable in IEC Method 

Utilizing membership functions, ten rules are formulated to generate an output for each input condition. Figure 6 

displays the rules editor for the IEC method, and Figure 7 illustrates the rule viewer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: Fuzzy logic rules for IEC method 
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From the Above rules in figure 6 executed by the Fuzzy Inference System (FIS), rule number one is calculated as follows: 

Rule 1: If Ratio 1 (R1) is LOW and Ratio 2 (R2) is LOW and Ratio 3 (R3) is LOW, THEN Output (O) is A where A has 

been designated for a particular fault condition with value range in the output membership functions as shown in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Rule viewer for IEC method 

 

Fuzzy logic models for Rogers, Doernenburg, KGA and Duval Triangle were also developed using the same process as 

that of IEC above. 

 

2.3  Decision Tree-Based Machine Learning Method 

Utilizing the decision tree algorithm for DGA data analysis enables predictions of the transformer's internal health 

status. The process involves: 

i. Data Collection: Gather DGA test data from transformers with known fault conditions, sourced from the IEC TC 10 

database. 

ii. Feature Selection: Identify and select relevant features with a strong correlation to fault diagnosis from the dataset. 

iii. Data Split: Divide the dataset into two sets for training and testing the model. The training set constructs the 

decision tree, while the testing set evaluates its performance. 

iv. Training the Decision Tree: Construct the decision tree using the training set, with the algorithm determining 

optimal split points for features. 

v. Evaluate the Decision Tree: Assess performance using the testing set, comparing predictions with actual fault 

diagnoses. Common metrics include accuracy, precision, and recall. 

vi. Predict Fault Diagnosis: Once trained and evaluated, the decision tree can predict fault diagnoses for new 

transformers based on DGA results. Inputting DGA data into the decision tree yields predicted fault diagnoses, as 

illustrated in Figure 8. 

 
3. RESULTS AND DISCUSSION 

Fuzzy Logic and decision tree models were implemented in MATLAB/Simulink on an Intel Core i5 CPU for the five 

traditional methods, resulting in a total of ten developed models. These models underwent testing with a dataset of 50 

Dissolved Gas Analysis (DGA) oil samples obtained from faulty transformers with known fault conditions. The results, 

presented in Figure 9, indicate the percentage accuracy of each model. Evaluation of overall accuracy involved comparing 

calculated faults with actual faults in the 50 samples, encompassing thermal faults of varying temperature ranges, arcing, 

and discharges. The Duval Triangle decision tree model achieved the highest accuracy at 98%, correctly identifying the 

faults in 49 out of 50 instances. Other decision tree models also demonstrated notable accuracies, as depicted in Figure 9. 

In contrast, the Key Gas method (KGA) fuzzy model exhibited the lowest accuracy among the ten models at 34%. 

3.1 Fuzzy Logic 

Fuzzy Logic employs rules and membership functions for fault calculation. Assigning a specific number to each fault 

allows a comparison between actual faults and fuzzy output. Table 8 showcases a dataset comprising 50 DGA results from 

the analysis of oil samples taken from faulty transformers with known faults.  
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Figure 8:  Some of the results of 50 DGA data samples with pre-known faults as predicted by decision tree algorithm 

 
Table 8: DGA results of 50 faulty transformer oil samples with known faults 

H2 H2O CO2 CO C2H4 C2H6 CH4 C2H2 TCDG Actual Faults 

1176  3400 299 2931 1178 3426 0 9010 Thermal Fault 

43  2326 718 139 65 116 0 1081 Thermal Fault 

54  4497 1358 101 23 143 0 1679 Thermal Fault 

19  1114 229 62 27 47 0 384 Thermal Fault 

114  5675 1309 574 80 241 0 2318 Thermal Fault 
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Table 8: DGA results of 50 faulty transformer oil samples with known faults (cont’d) 

H2 H2O CO2 CO C2H4 C2H6 CH4 C2H2 TCDG Actual Faults 

99  1625 304 386 73 288 0 1150 Thermal Fault 

1374  2819 783 5376 628 2648 298 11107 Thermal Fault 

34  3197 645 136 100 83 0 998 Thermal Fault 

20  2576 712 17 61 132 0 942 Thermal Fault 

13  5197 1046 16 83 138 0 1296 Thermal Fault 

37  926 132 57 19 96 0 341 Thermal Fault 

46  2678 184 150 27 147 0 554 Thermal Fault 

18  2633 390 51 20 63 0 542 Thermal Fault 

20  1854 571 77 45 19 0 732 Thermal Fault 

25  1814 424 58 42 49 0 598 Thermal Fault 

127  2024 0 32 0 24 81 264 Arcing 

441  1123 161 224 43 207 261 1337 Arcing 

217  1544 176 458 14 286 884 2035 Arcing 

48  0 0 75 3 43 81 250 Arcing 

318  0 0 583 57 337 641 1936 Arcing 

200  308 138 60 9 30 98 535 Arcing 

678  1909 768 89 31 70 237 1873 Arcing 

762  5346 459 54 38 93 126 1532 Arcing 

440  1232 428 62 31 522 183 1666 Arcing 

127  2024 0 32 0 24 81 264 Arcing 

441  1123 161 224 43 207 261 1337 Arcing 

217  1544 176 458 14 286 884 2035 Arcing 

210  1070 167 102 12 43 187 721 Arcing 

678  2211 216 108 92 368 163 1625 Arcing 

1498  3176 487 395 323 395 92 3190 Arcing 
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Table 8: DGA results of 50 faulty transformer oil samples with known faults (cont’d) 

H2 H2O CO2 CO C2H4 C2H6 CH4 C2H2 TCDG Actual Faults 

160  0 0 1 3 10 1 175 Sparking 

195  3674 607 79 127 660 22 1690 Sparking 

113  871 32 57 20 24 61 307 Sparking 

78    13 11 20 28 150 Sparking 

305    161 33 100 541 1140 Sparking 

1230    233 27 163 692 2345 Sparking 

645    110 13 86 317 1171 Sparking 

95    11  10 39 155 Sparking 

595    89 9 80 244 1017 Sparking 

240  0 0 28 5 20 96 389 Sparking 

893  2207 350 18 6 724 1 1992 Partial Discharge 

441  492 302 62 73 678 0 1556 Partial Discharge 

92600   6400 0.05 0.05 10200 0.05 109200.2 Partial Discharge 

26788   704 27 2111 18342 0.05 47972.05 Partial Discharge 

441  492 302 62 73 678 0 1556 Partial Discharge 

893  2207 350 18 6 724 1 1992 Partial Discharge 

234  0 230 10.1 162 25 0.8 661.9 Partial Discharge 

235  0 231` 10 165 25 1 667 Partial Discharge 

225  0 220 7.4 115 23 0.4 590.8 Partial Discharge 

239  0 225 10.9 149 25 0.76 649.66 Partial Discharge 

 

3.2 Fuzzy Duval Triangle 

The Duval Triangle method evaluates four distinct faults, excluding Normal. These faults are High Energy Discharge 

(2), Mixed Thermal and Electrical Fault (3), Thermal Fault <300°C (5), Thermal Fault 300°C–700°C (6), and Thermal 

Fault >700°C (7). High Energy Discharge and Thermal Faults are the most prevalent, each occurring 15 times. Among the 

fifty instances, fuzzy logic yielded correct predictions 41 times, resulting in 82% accuracy for the Duval Triangle method. 

Table 9 shows the Duval fuzzy output and the actual fault for each oil sample. 

The precision and recall of this Duval model for each fault condition are computed as given in Equations 1 to 8. 

 

Precision for Partial discharge PPD =
correct PD predictions (2)

correct PD predictions (2)+false PD predictions (0)
 = 

2

2+0
 =100%    (1) 
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Precision for Sparking PSP =
correct SP predictions (9)

correct SP predictions (9+false SP predictions (3) 
 = 

9

9+3
 = 75%       (2) 

 

Precision for Arcing PARC =
correct ARC predictions (15)

 
correct ARC predictions (15)+false ARC predictions (6)

 = 
15

15+6
 = 71.4%     (3) 

Precision for Thermal PTHM =
correct THM predictions (15)

 
correct THM predictions (15)+false THM predictions (9)

 = 
15

15+9
 = 62.5%    (4) 

 

Recall for Partial discharge RPD = 
correct PD predictions (2)

correct PD predictions (2)+failed PD predictions (8)
 = 

2

2+8
 = 20%     (5) 

 

Recall for Sparking RSP = 
correct SP predictions (9)

correct SP predictions (9)+failed SP predictions (1) 
 = 

9

9+1
 = 90%        (6) 

 

Recall for Arcing RARC = 
correct ARC predictions (15)

 
correct ARC predictions (15)+failed ARC predictions (0)

=  
15

15+0
= 100%        (7) 

 

Recall for Thermal RTHM = 
correct THM predictions (15)

 
correct THM predictions (15)+failed THM predictions (0)

 =  
15

15+0
= 100%     (8) 

 

Table 9 Fuzzy-duval triangle 

Fuzzy Outputs Actual Faults 
Fuzzy 

Outputs 

Actual 

Faults 
Fuzzy Outputs Actual Faults 

Low Thermal 5 Thermal Fault Arcing 2 Arcing Arcing 2 Sparking 

Low Thermal 5 Thermal Fault Arcing 2 Arcing Arcing 2 Sparking 

Low Thermal 5 Thermal Fault Arcing 2 Arcing Arcing 2 Sparking 

Low Thermal 5 Thermal Fault Arcing 2 Arcing Sparking 1 Sparking 

Low Thermal 5 Thermal Fault Arcing 2 Arcing Arcing 2 Sparking 

Low Thermal 5 Thermal Fault Sparking 1 Arcing Sparking 1 Sparking 

High Thermal 7 Thermal Fault Sparking 1 Arcing Low Thermal 5 Partial Discharge 

Low Thermal 5 Thermal Fault Arcing 2 Arcing Low Thermal 5 Partial Discharge 

Low Thermal 5 Thermal Fault Arcing 2 Arcing Partial Discharge 4 Partial Discharge 

Low Thermal 5 Thermal Fault Arcing 2 Arcing Partial Discharge 4 Partial Discharge 

Low Thermal 5 Thermal Fault Arcing 2 Arcing Low Thermal 5 Partial Discharge 

Low Thermal 5 Thermal Fault Sparking 1 Arcing Low Thermal 5 Partial Discharge 

Low Thermal 5 Thermal Fault 
Arcing 

&Thermal 3 
Arcing Medium Thermal 6 Partial Discharge 

Low Thermal 5 Thermal Fault 
Arcing 

&Thermal 3 
Sparking Medium Thermal 6 Partial Discharge 

Low Thermal 5 Thermal Fault 
Low Thermal 

5 
Sparking Medium Thermal 6 Partial Discharge 

Arcing 2 Arcing Arcing 2 Sparking Medium Thermal 6 Partial Discharge 

Arcing 2 
Arcing 

Arcing 2 
Sparking 
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Table 10: Percentage precision and recall of the model for each fault condition 

Faults %Precision %Recall 

Partial Discharge 100 20 

Thermal 62.5 100 

Arcing 71.4 100 

Sparking 75 90 

 

The same 50 dataset in Table 8 was also used to test the fuzzy models for Rogers ratio, IEC ratio, Doernenburg ratio and 

the Key Gas Analysis methods. Each model’s overall accuracy, precision and recall per fault were also calculated. 

3.3 Decision Tree: 

Distinct decision tree codes are formulated for each of the five methods, employing the Decision Tree approach. The 

algorithm is trained with IEC TC 10 database data and tested using the data presented in Table 8. After training, new gas 

values are input to identify potential faults through the TreeBagger algorithm. This algorithm employs bootstrap 

aggregation, constructing each tree in the ensemble on a bootstrap copy of the input data. Input and target variables are 

organized into separate arrays, both utilized in the tree algorithm to establish rules. Table 11 displays the prediction of the 

Duval Triangle decision tree model for the dataset in Table 8. 

Table 11: Decision Tree-Duval triangle 

Decision Tree Actual Fault Decision Tree Actual Fault Decision Tree Actual Fault 

Thermal Fault Thermal Fault Arcing Arcing Arcing Sparking 

Thermal Fault Thermal Fault Arcing Arcing Arcing Sparking 

Thermal Fault Thermal Fault Arcing Arcing Arcing Sparking 

Thermal Fault Thermal Fault Arcing Arcing Sparking Sparking 

Thermal Fault Thermal Fault Arcing Arcing Arcing Sparking 

Thermal Fault Thermal Fault Arcing Arcing Arcing Sparking 

Thermal Fault Thermal Fault Arcing Arcing Partial Discharge Partial Discharge 

Thermal Fault Thermal Fault Arcing Arcing Partial Discharge Partial Discharge 

Thermal Fault Thermal Fault Arcing Arcing Partial Discharge Partial Discharge 

Thermal Fault Thermal Fault Arcing Arcing Partial Discharge Partial Discharge 

Thermal Fault Thermal Fault Arcing Arcing Partial Discharge Partial Discharge 

Thermal Fault Thermal Fault Arcing Arcing Partial Discharge Partial Discharge 

Thermal Fault Thermal Fault Arcing Arcing Partial Discharge Partial Discharge 

Thermal Fault Thermal Fault Partial Discharge Sparking Partial Discharge Partial Discharge 

Thermal Fault Thermal Fault Arcing Sparking Partial Discharge Partial Discharge 

Arcing Arcing Arcing Sparking Partial Discharge Partial Discharge 

Arcing Arcing Arcing Sparking   

From Table 11, the Duval Triangle Decision Tree algorithm accurately identified faults in 49 out of 50 instances, resulting 

in 98% accuracy for the Decision Tree model. Precision and recall of this model for each fault condition are computed as 

given in Equations 9 to 16. 

Precision for Partial discharge PPD =
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐏𝐃 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟎)

𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐏𝐃 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟎)+𝐟𝐚𝐥𝐬𝐞 𝐏𝐃 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏)
 = 

𝟏𝟎

𝟏𝟎+𝟏
 = 90.9%    (9) 

Precision for Sparking PSP =
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐒𝐏 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟗)

𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐒𝐏 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟗)+𝐟𝐚𝐥𝐬𝐞 𝐒𝐏 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟎) 
 = 

𝟗

𝟗+𝟎
 = 100%       (10) 
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Precision for Arcing PARC =
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐀𝐑𝐂 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟓)

 
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐀𝐑𝐂 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟓)+𝐟𝐚𝐥𝐬𝐞 𝐀𝐑𝐂 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟖)

 = 
𝟏𝟓

𝟏𝟓+𝟖
 = 65.2%      (11) 

Precision for Thermal PTHM =
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐓𝐇𝐌 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟓)

 
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐓𝐇𝐌 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟓)+𝐟𝐚𝐥𝐬𝐞 𝐓𝐇𝐌 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟎)

 = 
𝟏𝟓

𝟏𝟓+𝟎
 = 100%     (12) 

Recall for Partial discharge RPD = 
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐏𝐃 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟎)

𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐏𝐃 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟎)+𝐟𝐚𝐢𝐥𝐞𝐝 𝐏𝐃 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟎)
 = 

𝟏𝟎

𝟏𝟎+𝟎
 = 100%     (13) 

Recall for Sparking RSP = 
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐒𝐏 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟗)

𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐒𝐏 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟗)+𝐟𝐚𝐢𝐥𝐞𝐝 𝐒𝐏 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏) 
 = 

𝟗

𝟗+𝟏
 = 90%        (14) 

Recall for Arcing RARC = 
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐀𝐑𝐂 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟓)

 
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐀𝐑𝐂 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟓)+𝐟𝐚𝐢𝐥𝐞𝐝 𝐀𝐑𝐂 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟎)

=  
𝟏𝟓

𝟏𝟓+𝟎
= 𝟏𝟎𝟎%          (15) 

Recall for Thermal RTHM = 
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐓𝐇𝐌 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟓)

 
𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐓𝐇𝐌 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟏𝟓)+𝐟𝐚𝐢𝐥𝐞𝐝 𝐓𝐇𝐌 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 (𝟎)

 =  
𝟏𝟓

𝟏𝟓+𝟎
= 𝟏𝟎𝟎%       (16) 

Table 12: Percentage precision and recall for each fault condition 

Faults %Precision %Recall 

Partial Discharge 90.9 100 

Thermal 100 100 

Arcing 65.2 100 

Sparking 100 90 
 

 

 
 

Figure 9: Comparison of overall accuracy for the fuzzy logic and the decision tree models 
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3.4 Performance Metrics 

Performance metrics assess the effectiveness of a classification machine learning model. Precision and recall are 

commonly used metrics. In transformer fault detection, precision gauges the accuracy of fault detection, while recall 

measures the model's sensitivity to specific fault conditions. Depending on the application, there can be a trade-off between 

precision and recall. In the context of detecting incipient faults in transformers, recall is deemed more desirable. Figure 10 

through 17 display fault percentage precision and recall for each expert model. The preferred model is one with the highest 

recall, aiming to identify as many positive cases (faults) as possible, even at the expense of some false positives. It's 

important to note that classifying sparking as arcing is considered correct, as both are discharges but of varying energy 

levels. 

 

 

Figure10: Percentage recall of each model for partial discharge 

 

 

 

Figure11: Percentage precision of each model for partial discharge 
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Figure12: Percentage recall of each model for thermal fault 

 

 
Figure13: Percentage precision of each model for thermal fault 

 
Figure14: Percentage recall of each model for arcing 
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Figure15: Percentage precision of each model for arcing 

 

Figure16: Percentage recall of each model for sparking 

 

 
Figure17: Percentage precision of each model for sparking 
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Table 13 below shows the faults identified with the highest capability by each of the developed models. It is observed 

from the table that the Duval Triangle Decision tree model is the best of all of the models in detecting transformer’s 

incipient faults.  It is also observed from the recall charts in Figure 10, Figure 12, Figure 14 and Figure 16 that the Decision 

tree models of all the five methods are better than the Fuzzy Logic counterpart as they are sensitive to more faults and can 

predict them with good accuracy. 

 

Table 13. Faults identified by each model 

Models Identified Faults 

Fuzzy KGA Thermal Faults 

Fuzzy Doernenburg Thermal Faults 

Fuzzy Rogers Thermal Faults 

Fuzzy IEC Thermal Faults 

Fuzzy Duval Triangle Arcing, Sparking, Thermal Faults 

DT KGA Thermal Faults, Arcing 

DT Doernenburg Thermal Faults, Arcing 

DT Rogers Arcing, Sparking 

DT IEC Thermal Faults, Arcing 

DT Duval Triangle Partial Discharge, Thermal Faults, Arcing, Sparking 

 

From Table 13, it can be seen that Duval triangle DT model is more sensitive to transformer faults viz: arcing, sparking, 

thermal and discharges than all other models. 

 

4. CONCLUSION 
This paper employs Fuzzy logic and decision tree algorithms for DGA analysis, evaluating their performance on a 

dataset of 50 DGA samples with known faults. The Duval triangle decision tree model emerges as the most accurate for all 

known transformer’s internal fault detection like electrical, thermal and discharges in terms of accurate prediction and 

sensitivity. The acceptable accuracy of other models underscores and confirms the efficacy of artificial intelligence 

methods over traditional approaches.  Similarly, in the household of the Fuzzy Logic, Fuzzy Duval Triangle is the most 

effective model in the detection of thermal faults and electrical faults like arcing and sparking while other fuzzy models are 

effective in detecting thermal faults. Moreover, Decision Tree models exhibit increased accuracy, suggesting potential 

enhancements through re-training with a more precise dataset possibly from the output of the fuzzy models in their 

respective area of accurate fault detection and sensitivity (specialisation). Future implementations may benefit from 

developing models based on these conventional methods using advanced AI techniques such as deep learning for higher 

computational capability. 
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