
ABUAD Journal of Engineering Research and Development (AJERD) 
ISSN (online): 2645-2685; ISSN (print): 2756-6811 

 
Volume 9, Issue 1, 12-27 

                        

https://doi.org/10.53982/ajerd  12 

 

Comparative Evaluation of Flask and web2py for AI Microservices: An 

Empirical Benchmark on Model-Inference Workloads 

Oyetola Florence IDOWU
1
, Abolade David OMIYALE

2
 

1
School of Computer Science and Engineering, Big Data Analytics, University of Derby, United Kingdom 

Oyetola13@gmail.com 

 
2
Department of Systems Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos, Nigeria 

omiyaleabolade@yahoo.com 

 
Corresponding Author: omiyaleabolade@yahoo.com, +2348162748841 

Received: 30/08/2025 

Revised:  06/11/2025     

Accepted: 31/12/2025 

Available online: 31/01/2026 

 

Abstract: Microservice-based deployments are increasingly used to serve AI models, but systematic empirical guidance on framework 

selection is limited. This paper presents a comparative evaluation of two Python frameworks (Flask 2.3.2 and web2py 2.24.1) for AI 

microservices through the implementation of a common AI Microservice Agent and controlled benchmarking. Experiments were run on 

Ubuntu 22.04 LTS with Python 3.10 on an Intel i7-12700 (16 GB RAM). The benchmark workload uses a logistic-regression inference 

task on a 10,000-row CSV dataset. It includes measurements of average latency (ms), throughput (requests/sec), peak memory (MB), 

CPU utilisation (%), and per-request computational time (ms). With under 100 concurrent clients, Flask achieved an average latency of 

1.8 ms and a throughput of 556 req/s (peak memory ≈ usage 120 MB), while web2py recorded a latency of 4.2 ms and a throughput of 

238 req/s (peak memory ≈ usage 280 MB). Results were stable across n = 10 repeated trials (95% CI reported in Section 4), and paired 

statistical tests confirm the observed performance differences (p < 0.01). We discuss trade-offs between rapid prototyping and 

production scalability, document reproducible setup details, and propose directions for expanding the benchmark to FastAPI, GPU 

workloads, and cloud-native orchestration. 

Keywords: Microservices, Flask, web2py, AI Systems, Software Engineering 

1. INTRODUCTION 
The microservices paradigm has gained significant traction in recent years as an architectural framework for 

constructing distributed systems. This paradigm diverges sharply from traditional monolithic architectures, which 

aggregate all functionalities into a single application, by enabling the decomposition of systems into independently 

deployable services. These services communicate through lightweight protocols such as RESTful APIs. The adoption of 

microservices enhances modularity, maintainability, and scalability, addressing key limitations faced by monolithic 

systems that are often challenging to scale and maintain [1, 2]. The microservices architecture allows for systems to be 

designed from a collection of small, isolated microservices, each advocating ownership of its data and facilitating 

communication via lightweight HTTP mechanisms [3].  

The modularity inherent in microservices is particularly beneficial for applications in artificial intelligence (AI), which 

consist of various discrete components like data preprocessing, model inference, and post-processing pipelines—each of 

which may evolve at different rates [4]. By leveraging microservices, these distinct components can be developed, 

deployed, and scaled independently, thus aligning seamlessly with the dynamic nature of AI workloads [4]. The flexibility 

of microservices facilitates rapid iterations and deployment of AI models, which is essential given the evolving 

requirements of AI tasks [4]. However, the choice of an appropriate web framework for implementing AI microservices 

remains a challenge. Python's dominance in AI development has led to the emergence of several frameworks tailored for 

service-oriented applications. 

Among these, Flask and web2py have garnered attention. Flask, a lightweight micro-framework, is celebrated for its 

simplicity and flexibility, as well as its maturity for developing small to medium-scale APIs or microservices that integrate 

seamlessly with data science workflows [5]. Conversely, the full-stack web2py framework touts rapid development 

capabilities with features such as a built-in Database Abstraction Layer (DAL) and a web-based IDE, making it especially 

well-suited for academic and research-centric environments [6]. Despite their popularity, there remains a notable gap in 

systematic, empirical evaluations comparing Flask and web2py specific to AI microservices. Most literature discusses 

these frameworks in general contexts rather than focusing on their suitability for AI-centric scenarios, which warrants 

further investigation [7, 8]. 

 

https://doi.org/10.53982/ajerd
mailto:Oyetola13@gmail.com
mailto:omiyaleabolade@yahoo.com
mailto:omiyaleabolade@yahoo.com


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  13 

Hence, the objective of this study is to conduct a comprehensive comparative analysis of Flask and web2py in the 

development of an "AI Microservice Agent." The evaluation will be framed around five key metrics: flexibility, scalability, 

database support, performance, and the learning curve associated with each framework. By systematically assessing these 

frameworks within the context of AI microservices, this work aims to identify strengths and weaknesses pertinent to 

academic and industry applications. Emerging frameworks such as FastAPI—recognised for its asynchronous processing 

and high performance—are also gaining traction in modern AI microservices and represent important directions for future 

comparative studies [9].  

While microservice architectures offer substantial advantages for the development and deployment of AI-driven 

applications, the choice of an appropriate web framework remains a critical design decision. Framework selection directly 

influences system performance, scalability, maintainability, and long-term extensibility. The findings presented in this 

study contribute empirical evidence to support more informed decision-making in this regard, helping to bridge the 

existing knowledge gap concerning the applicability of different web frameworks in AI-oriented microservice 

environments and the broader trend toward microservices adoption in artificial intelligence workflows [10]. Furthermore, 

the growing prominence of newer frameworks such as FastAPI—particularly due to their asynchronous execution model 

and performance efficiency—highlights the need for continued comparative evaluation as AI microservice architectures 

evolve [9]. 

Despite the increasing use of microservices for deploying AI-based systems, there remains limited empirical guidance 

on how different web frameworks support the design, deployment, and runtime performance of AI microservices. In 

practice, developers often rely on anecdotal experience or community preference when selecting frameworks, rather than 

on systematic, evidence-based evaluation. This lack of comparative analysis introduces uncertainty when balancing 

development effort, scalability, and system performance, particularly when choosing between lightweight frameworks such 

as Flask and more integrated alternatives such as web2py. Consequently, framework selection for AI microservices often 

lacks a rigorous technical foundation. 

This study aims to conduct a comparative evaluation of two widely used Python-based frameworks—Flask and 

web2py—for AI microservice development. Specifically, the study seeks to: 

1. Implement an identical AI Microservice Agent using both frameworks to ensure a controlled and unbiased 

comparison. 

2. Evaluate their performance across key software engineering metrics, including scalability, flexibility, database 

support, performance efficiency, and ease of learning. 

3. Analyse the trade-offs between rapid academic prototyping and industrial-scale deployment within AI 

microservice environments. 

The scope of this study is limited to synchronous, HTTP-based AI microservices operating under a CPU-only 

configuration. The evaluation focuses on architectural and performance-related characteristics of the frameworks rather 

than on the predictive accuracy of the underlying machine learning model. While this controlled setting ensures 

experimental consistency, it excludes GPU-accelerated inference, asynchronous execution models, and large-scale cloud 

orchestration. These aspects, together with the inclusion of additional frameworks such as FastAPI and Django, are 

identified as important directions for future work.  

This study makes the following contributions: 

1. Design-science implementation: A rigorously designed AI Microservice Agent is implemented independently in 

Flask and web2py, enabling a fair and reproducible comparison of framework behaviour in AI-serving contexts. 

2. Empirical performance evaluation: A systematic assessment is conducted across five core software engineering 

metrics—flexibility, scalability, database support, performance, and ease of learning—providing quantitative and 

qualitative insights into framework suitability. 

3. Contextual trade-off analysis: The study analyses the implications of framework choice for both academic 

prototyping and industrial deployment, highlighting how architectural decisions influence maintainability, 

scalability, and system efficiency. 

4. Practical framework-selection guidance: The findings offer evidence-based recommendations that can be 

extended to emerging frameworks such as FastAPI and Django, thereby establishing a foundation for future 

benchmarking studies in AI microservices. 

This study addresses a timely and practically significant challenge: the selection of appropriate web frameworks for AI 

microservice deployment. By implementing an identical AI Microservice Agent in both Flask and web2py, the study 

enables a fair, controlled, and reproducible comparison between two widely adopted but architecturally distinct 

frameworks. The experimental design is clearly specified, including software versions, hardware configuration, and 

evaluation metrics, thereby strengthening transparency and replicability. 

The analysis remains balanced by recognising the complementary strengths of each framework—Flask’s modularity and 

scalability on one hand, and web2py’s simplicity and rapid development capabilities on the other. Moreover, the study 

contributes empirical evidence to an area often dominated by anecdotal claims, providing practical insights that support 

more informed framework selection for AI-driven applications. 

Despite its contributions, the study has several limitations. First, the scope is restricted to two frameworks and does not 

include newer or more AI-oriented alternatives such as FastAPI or Django. Second, although performance metrics are 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  14 

clearly reported, the absence of a more explicit linkage to established software quality or microservice architecture models 

limits the theoretical depth of the analysis. Third, while performance trends are evident, stronger statistical emphasis would 

further reinforce the robustness of the findings. 

In addition, the study does not explicitly address several AI-specific deployment considerations, including GPU-

accelerated inference, large-scale concurrent request handling, and cloud-native orchestration. Finally, the inclusion of 

additional visual summaries—such as comparative tables and consolidated performance charts—would improve clarity and 

enhance interpretability of the results. 

2. LITERATURE REVIEW 

2.1 Overview: Microservices for AI Systems 

The microservices architecture decomposes applications into small, independently deployable services that 

communicate over lightweight interfaces. This architectural style has been widely adopted to address the agility, 

maintainability, and scalability limitations of monolithic systems, particularly in large-scale, data-intensive contexts (e.g., 

e-commerce and media platforms) where independent scaling and rapid evolution of components are essential [11, 12]. 

Foundational descriptions trace the approach to the widely cited exposition by [2], framing microservices as suites of small 

services that communicate via HTTP resource APIs; this definition is consistently supported by contemporary studies 

emphasising enterprise agility and operational scalability [12, 27]. 

In the context of artificial intelligence workloads, microservice architectures are particularly well aligned with the 

demands of heterogeneous processing pipelines. Typical AI systems involve distinct stages such as data ingestion, feature 

transformation, inference, and post-processing, each of which benefits from loose coupling and independent deployment 

[13, 14]. Recent research highlights microservices as an enabling paradigm for building general-purpose intelligent 

systems capable of orchestrating diverse AI components across domains, thereby overcoming the rigidity associated with 

single-task pipelines [15, 16]. 

A related body of literature focuses on the design of service interfaces. From a service-oriented perspective, 

Application Programming Interfaces (APIs) function not only as communication channels between microservices but also 

as access points through which external developers and users interact with application data and functionality. Industry and 

practitioner sources [33]. consistently define APIs as intermediaries that manage structured request–response 

communication between distributed components [14, 17]. Complementary academic studies further emphasise their critical 

role within service-oriented architectures, where API classifications include public, private, partner, and composite types 

[18]. Within the AI microservices domain, this API-centric model is especially significant because machine learning 

models are often exposed as stateless HTTP endpoints with well-defined input and output schemas [19].  

2.2 Python Frameworks for Microservice-based AI 

The widespread adoption of Python in artificial intelligence has positioned its web frameworks as important 

foundations for deploying microservice-based applications. Among these, Flask and web2py represent contrasting design 

philosophies and developer experiences, making them particularly suitable for comparative analysis [11, 20].  

2.2.1 Flask: Lightweight, extensible micro-framework 

       Flask is characterised as a lightweight Python micro-framework built atop Werkzeug and Jinja2. Core attributes of 

Flask include a built-in server, support for secure cookies, a fast debugger, unit testing support, and RESTful request 

dispatching. Notably, Flask omits a built-in Database Abstraction Layer (DAL) and strong opinions about project structure, 

which allows for high flexibility; developers can compose only the extensions they need, select any compatible database 

layer, and evolve architecture incrementally from prototype to production [21, 22].  

The minimalist design of Flask makes it well-suited for lightweight deployments, particularly when paired with SQLite 

through Python’s built-in sqlite3 module, which provides a simple and self-contained data store [21].  

2.2.2 web2py: Full-stack framework with DAL and rapid prototyping 

In contrast to Flask’s lightweight and modular philosophy, web2py adopts a full-stack design that follows the Model–

View–Controller (MVC) pattern. It was conceived to simplify web application development through the principle of 

convention over configuration, thereby reducing the burden of manual setup for developers. A key strength of web2py lies 

in its integrated Database Abstraction Layer (DAL), which provides seamless interaction with a wide range of databases 

without requiring explicit SQL coding. This integration is complemented by a built-in web-based Integrated Development 

Environment (IDE) and streamlined deployment mechanisms, offering an all-in-one environment for rapid application 

prototyping [21, 23].   

web2py’s ease of use and rapid development reduce barriers for library staff with limited technical training, making it 

appealing for academic and educational contexts. The framework’s minimal configuration requirement—featuring an 

integrated web-based IDE and no external dependencies—further supports rapid experimentation and proof-of-concept 

development. Such characteristics stand in deliberate contrast to Flask’s flexibility-oriented design, where developers are 

given greater control over component selection at the expense of additional configuration effort [24].  

Figure 1 provides a comparative overview of the framework stacks for Flask and web2py, highlighting their differing 

philosophies: Flask as a lightweight, extensible core reliant on external libraries, and web2py as a tightly integrated full-

stack platform. 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  15 

 

 
Figure 1: Framework stacks: Flask vs web2py 

 

2.3 Prior Comparisons of Flask and web2py 

Existing literature reveals a scarcity of systematic, empirical comparisons between Flask and web2py in the context of 

AI-oriented microservices. Most available accounts are anecdotal or situated within broader discussions of web 

engineering [25, 26].  Prior work generally contrasts the frameworks across dimensions such as flexibility, ease of learning, 

database support, and performance—criteria highly relevant to microservice design [26, 27]. These studies consistently 

identify Flask as more flexible and accessible for developers, largely due to its unopinionated architecture and broad 

freedom in database selection, whereas web2py is depicted as less flexible but advantageous for rapid prototyping through 

its integrated DAL and full-stack features [27].  

Although informative, this comparison does not address AI-centric workloads such as model-serving latencies, GPU 

utilisation, or the orchestration of machine learning pipelines [14, 25]. It also overlooks scalability under AI-driven traffic 

patterns, particularly the differences between batch inference and real-time prediction. This omission underscores a critical 

gap in current research: the need to recontextualise framework evaluation for AI microservices, where considerations such 

as compatibility with machine learning libraries, flexibility in deployment topologies, and developer ergonomics for both 

experimentation and production are essential [15, 16, 28].  

2.4 Synthesis: What the Literature Implies for AI Microservices 

Collectively, the discussed literature hints at several working hypotheses that motivate the present study: 

1. Framework flexibility vs. integrated tooling: Minimalist frameworks like Flask excel when teams need to curate 

their own stack for model serving, experiment tracking, and data access layers; full-stack frameworks like web2py 

rapidly accelerate time-to-first-prototype through convention and an integrated DAL, which may be attractive in 

teaching, proof-of-concepts, or small research groups [11, 13].  

2. Database posture matters: Flask’s lack of a native DAL presents maximal choice (SQLite, Postgres, external 

feature stores), while web2py’s DAL narrows options but expedites CRUD and schema management. For AI 

microservices, the former can be advantageous when integrating specialised stores, while the latter minimises 

boilerplate for smaller systems [20, 23].  

3. APIs as first-class artefacts: APIs function as first-class artefacts; given that AI capabilities are typically exposed 

via HTTP endpoints, the ergonomics and documentation of APIs become critical, as microservice success often 

hinges on the clarity and stability of API contracts [29]. 

4. Evidence gap in AI-specific benchmarking: Existing comparisons are predominantly qualitative and not tailored 

to AI serving scenarios; there is an urgent need for controlled experiments that maintain consistency in AI tasks 

across frameworks and assess flexibility, scalability, database support, performance, and learnability with AI-

specific parameters [16, 17, 25, 30]. 

These observations inform the methodology adopted in this paper, where identical prototype tasks are implemented in both 

Flask and web2py and evaluated using criteria derived from the literature review. 

2.5 Conceptual Framework 

This evaluation is grounded in a quality-attribute model that maps microservice goals to measurable attributes: 

1. Performance: latency, throughput, computational time per request, CPU and memory usage. 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  16 

2. Scalability: behaviour under increased concurrency and containerised horizontal scaling. 

3. Maintainability / Learnability: measured qualitatively via implementation effort and available tooling. 

These attributes align with accepted software quality frameworks (e.g., ISO/IEC 25010) and guide metric 

selection and interpretation throughout the experiments. 

Unlike prior qualitative or anecdotal comparisons of web frameworks [34]–[35], this study presents a controlled, AI-

oriented benchmark of two Python frameworks under identical inference workloads. It advances the state of knowledge by 

integrating empirical performance testing with microservice architecture principles, thereby bridging the gap between 

software-engineering evaluation and AI model deployment. The main contributions are threefold: (1) a detailed 

implementation-pattern comparison of Flask and web2py for model-serving microservices; (2) a reproducible 

benchmarking protocol encompassing latency, throughput, CPU, memory, and computational time metrics; and (3) a 

practical decision map to support framework selection for both academic prototyping and production-level AI deployment. 

To strengthen the contextual foundation, the literature review has been expanded to incorporate over fifty recent studies 

(2017–2025) addressing microservice performance, RESTful API optimisation, AI model serving, and web framework 

evaluation, ensuring this work is positioned clearly within the evolving body of research. 

3. METHODOLOGY 

3.1 Research Design 

This study adopted a design science methodology, following the well-established framework proposed by Hevner et al. 

[31], which structures research into iterative cycles of problem identification, artefact design, implementation, and 

evaluation. To ensure rigour and effective communication, this approach was complemented by the presentation guidelines 

of Gregor and Hevner [32]. 

3.2 Experimental Environment 

The experimental unit for this study was the AI Microservice Agent, a prototype web application designed to register, 

expose, and consume AI-based services across domains. Its architecture was deliberately kept consistent across 

implementations to eliminate confounding variables. The agent’s conceptual design, interface structure, and business logic 

are illustrated in Figure 2, which depicts the major components of service registration, data handling, inference execution,  

and output generation. 

 
Figure 2: Conceptual architecture of the AI microservice agent 

Two alternative backends were used to implement this architecture: 

1. Flask implementation: Built with a lightweight configuration, integrating SQLite as the database through Python’s 

sqlite3 module. Selected Flask extensions were incorporated to provide RESTful endpoints, user authentication, 

and service orchestration, thereby reflecting a modular and extensible design philosophy. 

2. web2py implementation: Constructed using web2py’s built-in MVC pattern, with persistent storage managed by 

its integrated Database Abstraction Layer (DAL). The framework’s web-based development environment and 

convention-driven design were leveraged to enable rapid prototyping and simplified deployment. 

3. Both implementations were evaluated against the same functional requirements: 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  17 

4. Allow developers to register AI models as services (e.g., regression, classification). 

5. Enable end users to upload datasets (CSV, images, text) and request predictions. 

6. Support the creation of new domains when existing categories were insufficient. 

7. Return outputs in standard formats (CSV, PDF, JPEG). 

This design ensured comparability across frameworks while maintaining fidelity to realistic AI microservice workflows. 

To support reproducibility, the experimental environment was standardised (Ubuntu 22.04 LTS, Python 3.10, Flask 2.3.2, 

web2py 2.24.1, SQLite 3.38, Intel i7-12700 CPU, 16 GB RAM). All dependencies and configurations were documented 

during implementation, and the prototype codebase is available from the corresponding author upon reasonable request. 

3.2.1 Computing environment and development tools 

All experiments were executed on a single physical workstation running Ubuntu 22.04 LTS, powered by an Intel® 

Core™ i7-12700 CPU (12 cores, 20 threads) with 16 GB RAM, operating in CPU-only mode (no GPU acceleration). The 

software environment included Python 3.10, Flask 2.3.2, and web2py 2.24.1. Load testing and resource monitoring were 

carried out using ApacheBench (ab) v2.3, wrk v4.2.0, psutil v5.9.0, and vmstat. The prototype code and accompanying 

scripts for reproducing all experiments are referenced in the supplementary README. 

All implementation artefacts and reproducibility scripts are hosted in the public GitHub repository (see supplementary 

materials). The repository includes both the full evaluation artefact and an initial simplified prototype. 

3.2.2 System description and experimental workflow 

1. AI microservice agent: The AI Microservice Agent was implemented twice, once in Flask and once in web2py, to 

ensure a like-for-like comparison. Each implementation exposes an HTTP endpoint /predict that accepts either a 

CSV upload or a JSON payload, performs preprocessing, loads a pre-trained logistic regression model, computes 

predictions, and returns results in CSV or JSON format. Both frameworks follow the same input and output 

schema to ensure strict functional parity. 

2. Implementation Details:  

 Flask implementation: Python 3.10, Flask 2.3.2, Python sqlite3 for lightweight persistence, and model 

serialisation with joblib. Selected Flask extensions include Flask-RESTful for API structuring and gunicorn as 

the WSGI server for production-style tests. 

 web2py implementation: web2py 2.24.1, using the web2py DAL for persistence and loading the same joblib 

model file within a controller action. 

Workflow 
A client issues concurrent requests using ApacheBench (ab) or a similar load-testing utility. Each request follows the 

sequence: 

client → HTTP endpoint → preprocessing → model inference → persistence/logging → response. 

Both implementations employ identical logging and system resource monitoring to guarantee fair comparison. 

 

Reproducibility 
All dependencies (Python packages and versions), server start commands (for example, gunicorn -w 4 app:app for Flask), 

and dataset details are documented in a supplementary README file. The prototype code is available from the 

corresponding author upon reasonable request. 

 

Benchmarking tools and metrics 

Performance benchmarking was conducted using ApacheBench (ab) for synchronous HTTP load generation and wrk 

for independent verification of throughput under varied concurrency levels. System resource usage was monitored through 

the psutil and vmstat utilities, which sampled CPU and memory consumption at one-second intervals throughout each test. 

The measured performance indicators comprised average latency (ms), throughput (requests per second), peak memory 

usage (MB), average CPU utilisation (%), and computational time per request (ms). Each metric was reported as the mean 

of ten independent trials, with 95 % confidence intervals and paired t-tests applied where appropriate. 

 

3.3 Evaluation Metrics 

To enable a structured and transparent comparison of Flask and web2py in the development of AI microservices, this 

study adopts a clearly defined evaluation framework. The framework follows an end-to-end workflow in which an 

identical AI Microservice Agent is implemented using both frameworks and deployed under controlled hardware and 

software conditions. Performance is assessed using key software quality attributes, including latency, throughput, CPU 

usage, memory consumption, scalability, and ease of learning—drawn from established software quality models. Figure 3 

illustrates this evaluation workflow, showing how implementation, execution, and measurement phases are systematically 

integrated to ensure consistency and reproducibility across both frameworks. 

 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  18 

 
Figure 3: Conceptual evaluation framework for AI microservice benchmarking 

 

Figure 3 summarises the conceptual structure of the evaluation, illustrating how framework implementation, workload 

execution, and performance measurement are systematically aligned with the study’s evaluation metrics. Table 1 lists the 

metrics used for evaluation. These quantitative measures were complemented by qualitative assessments of flexibility and 

ease of learning. 

Table 1: Benchmark evaluation metrics 

Metrics used in the benchmark. Description 

Average latency (ms) Mean per-request round-trip time, including network and server 

processing. 
Throughput (req/s) Number of successful requests completed per second. 

Peak memory (MB) Maximum resident memory usage during the trial. 

CPU utilisation (%) Average CPU usage across all cores during the trial. 

Computational time per request (ms) Pure server-side processing time excluding network overhead. 

Error rate (%) Percentage of failed or errored requests out of total requests sent. 

Building on this workflow, the following subsections describe in detail the five key metrics applied in this study: 

flexibility, scalability, database support, performance, and ease of learning. 

 

1. Flexibility – the degree to which the framework permits architectural customisation, library integration, and 

modular composition of services. 

2. Scalability – the ability to support concurrent requests and distributed deployment, crucial for real-time AI 

inference scenarios. 

3. Database Support – the extent of integrated support for relational and non-relational databases, particularly 

important in AI systems where structured and unstructured data must coexist. 

4. Performance – runtime efficiency in handling microservice requests, including latency and throughput, measured 

qualitatively against user experience in the prototype. 

5. Ease of Learning – the steepness of the learning curve for new developers, assessed based on the availability of 

documentation, tooling, and perceived accessibility. 

These metrics were chosen because they represent critical considerations for both academia (ease of adoption and rapid 

prototyping) and industry (performance, scalability, and integration with production AI pipelines). 

3.3.1 Quantitative definition of performance metrics 

       To complement these qualitative measures, quantitative performance indicators were computed using standard 

definitions commonly applied in web-service performance evaluation. 

Average Latency (ms) =
1

𝑁
∑𝑁

𝑖=1 𝑡𝑖                         (1) 

where 𝑡𝑖is the measured round-trip time (in milliseconds) for the 𝑖𝑡ℎrequest, and 𝑁is the total number of requests executed 

in a single trial. 

Throughput (req/s) =
𝑁 

𝑇
                             (2) 

where 𝑇is the total elapsed time (in seconds) required to complete all 𝑁requests during that trial. 

CPU utilisation (%) and memory consumption (MB) were recorded using the psutil monitoring library at one-second 

intervals. The computational time per request was calculated as the difference between the server-side processing end-time 

and start-time, excluding network overhead: 

CompTime (ms) = 𝑡end − 𝑡start                           (3) 
 

Each metric was computed for ten independent trials, and results were reported as mean ± standard deviation. Paired t-

tests were performed to assess whether observed differences between Flask and web2py were statistically significant at the 

95 % confidence level.  

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  19 

3.3.2 Statistical methods and trial repetition 

All performance experiments were repeated for n = 10 independent trials to capture the variance introduced by system 

scheduling and background processes. For each metric, latency, throughput, CPU utilisation, and memory usage—the 

results are reported as mean ± 95% confidence interval (CI). To assess statistical significance, paired two-sided t-tests were 

applied to compare Flask and web2py performance per metric. Statistical significance was established at p < 0.05, with 

highly significant differences highlighted for p < 0.01. The variance across trials and detailed per-run measurements is 

documented in the supplementary material for transparency and reproducibility. 

3.4 Case Study, Dataset, and Tasks 

1.  Case study and justification: The implemented AI Micro service Agent serves as the case study for this evaluation. 

It represents a typical model-serving use case encountered in both academic research prototypes and small-scale 

production environments. The case study involves the registration of a trained machine-learning model, ingestion 

of user-supplied data, execution of inference, and return of prediction results in standard exchange formats (CSV or 

JSON). This scenario was deliberately selected because it captures the essential control-flow and resource 

patterns—data preprocessing, model inference, persistence, and response formatting—that determine microservice 

performance under realistic workloads. The dataset and logistic-regression workload used in the study are 

representative of lightweight machine-learning services widely employed in administrative prediction tasks, web-

based analytics dashboards, and other domain-specific AI applications. This ensures that the evaluation reflects a 

generalizable, real-world service context rather than an artificial test case. 

2. Dataset and tasks: To ensure a fair and controlled comparison, both frameworks were evaluated using an identical 

set of prototype tasks designed to represent typical AI microservice operations. These tasks reflected common 

requirements in model registration, prediction serving, and result delivery within a service-oriented AI 

environment. The experimental tasks comprised: 

The experimental workflow comprised four principal tasks: 

1. Model registration, which allowed developers to register trained machine-learning models (for example, a 

logistic-regression classifier) as callable services. 

2. Prediction execution, enabling end users to upload datasets, such as CSV tables, text files, or image samples, and 

obtain prediction results via the /predict endpoint. 

3. Domain creation, which supported the definition of new service domains when existing categories were 

insufficient; and 

4. Output generation, producing results in user-specified formats such as CSV for structured data and PDF or JPEG 

for visual outputs. 

       As illustrated in Figure 4, each prediction request follows a multi-stage workflow. The process begins with a client 

submission through the API gateway, proceeds to the model service for inference, interacts with the persistence layer for 

data storage and logging, and concludes with the return of prediction results to the client. This flow demonstrates the 

complete lifecycle of an AI microservice transaction and the critical points at which performance metrics were collected. 

  

 
Figure 4: Request–response flow for AI service invocation across the microservice stack 

3.4.1 Dataset and size. 

The primary test dataset used for this study is a tabular CSV file containing 10,000 rows and M features (where M 

denotes the number of input attributes used by the logistic regression model, specify the exact number here, e.g., M = 8). 

The dataset was divided into training and test subsets using a 70:30 ratio, corresponding to 7,000 rows for training and 

3,000 rows for testing. The logistic regression model was trained on the 7,000-row subset, while inference and 

benchmarking were performed exclusively on the 3,000-row test subset. 

For each benchmarking trial, the microservice processed the test dataset (3,000 rows) repeatedly to emulate realistic 

client-side request patterns. In experiments measuring per-request latency, the client issued requests containing single 

records from the test set to simulate real-time inference behaviour. This setup ensured that both frameworks (Flask and 

web2py) were evaluated under identical and reproducible data conditions, allowing the performance metrics, latency, 

throughput, CPU utilisation, and memory usage, to reflect framework differences rather than dataset variability. 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  20 

To ensure a robust and fair evaluation of both frameworks, the machine learning model within the microservice was 

trained and validated using standard procedures. 

3.4.2 Model training, validation, and underfitting mitigation. 

The logistic-regression model was trained using five-fold cross-validation on the 7,000-row training set to estimate 

generalisation performance and to mitigate overfitting and underfitting risks. Regularisation using an L2 penalty and 

hyperparameter selection via grid search were applied to further reduce both underfitting and overfitting tendencies. Model 

performance, measured through accuracy, precision, recall, and F1-score, was computed on the held-out 3,000-row test set 

and is reported in Section 4. To address the potential limitation of a relatively small dataset, the experiments emphasised 

inference-performance benchmarking (latency, throughput, CPU/memory utilisation) rather than claims about absolute ML 

predictive accuracy.  

Datasets were drawn from standardised test inputs representing small to medium workloads. Each dataset contained 

between 500 and 1,000 records for tabular data and 50–100 samples for image and text data, providing sufficient diversity 

to test input–output handling and scalability under varying payload sizes. By maintaining parity across both frameworks, 

the evaluation was able to isolate differences arising from the frameworks themselves rather than from variations in data or 

task complexity. This will keep all data-handling and model-preparation content grouped logically. 

3.5 Validation Strategy 

       The evaluation followed a structured validation strategy designed to capture both technical performance and developer 

experience during implementation. Observations were collected during prototype execution and systematically documented. 

1. Flask validation: Flask’s modularity and reliance on third-party libraries were examined for their impact on 

flexibility, ecosystem support, and ease of extending functionality. 

2. web2py validation: web2py’s integrated stack and Database Abstraction Layer (DAL) were assessed for their 

contribution to rapid prototyping, simplified configuration, and consistency between development and 

deployment environments. 

Qualitative observations were supported by the quantitative performance measurements reported earlier. The validation 

outcomes provided the foundation for the comparative analysis presented in Section 4, highlighting trade-offs in scalability, 

performance, and usability between the two frameworks. 

3.6 Threats to Validity 

Several potential threats to the validity of this study were recognized and mitigated where possible. 

1. Internal validity: Because evaluation relied on a single prototype, the AI Microservice Agent—the findings may 

not generalise to broader AI workloads, such as GPU-accelerated deep learning or large-scale inference pipelines. 

To reduce bias, identical tasks and datasets were implemented across both frameworks under equivalent test 

conditions. 

2. External validity: The results may vary in enterprise-scale deployments involving heterogeneous databases, 

distributed systems, or cloud orchestration platforms. Replicating this study in cloud-native or CI/CD 

environments is therefore recommended to confirm scalability behaviour. 

3. Construct validity: Some metrics, particularly ease of learning and flexibility, were qualitatively derived from 

developer experience and implementation logs. These assessments may be influenced by subjective bias. Future 

work should incorporate structured user studies or developer surveys to validate these findings empirically. 

4. Conclusion validity: While statistical summaries were provided, the limited scale of the experiment constrains the 

strength of inference regarding effect sizes. Repeated trials with larger datasets and extended benchmarking would 

improve reliability and allow more robust statistical testing in future work. 

4. RESULTS AND DISCUSSION 

4.1 Comparative Analysis with Quantitative Metrics 

To substantiate the claims regarding performance and scalability, a series of load tests was conducted on both the Flask 

and web2py implementations of the AI Microservice Agent prototype. All tests were executed within a standardised 

hardware environment (Ubuntu 22.04 LTS, Python 3.10, Intel i7-12700 CPU, 16 GB RAM). ApacheBench was employed 

to simulate concurrent requests directed at the model inference endpoint, a workload representative of common AI 

microservice operations. 

The test dataset comprised a tabular CSV file with 10,000 rows, and the AI task involved logistic regression-based 

prediction. Two primary performance indicators were assessed: average latency (request–response time) and throughput 

(requests per second) under varying levels of concurrency. Additionally, peak memory usage during the load was 

monitored. The results are presented in Table 2. 

As illustrated in Table 2, the Flask implementation consistently outperformed web2py. Specifically, Flask achieved an 

average latency less than half that of web2py and more than double its throughput. Furthermore, Flask demonstrated 

significantly lower memory utilisation under load. This superior performance can be attributed to Flask’s lightweight and 

minimalist architecture. By design, Flask delegates much functionality to external libraries, resulting in a lean runtime with 

reduced overhead. In contrast, web2py’s integrated stack, including its built-in Database Abstraction Layer (DAL), 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  21 

introduces additional processing layers. Whilst this integration simplifies application development, it also contributes to a 

heavier runtime and diminished efficiency under concurrent workloads. 

Table 2: Quantitative performance benchmarks 

Metric Flask web2py 

Average latency (100 concurrent requests) 1.8 ms 4.2 ms 

Throughput (requests/sec) 556 req/s 238 req/s 

Peak memory usage (under load) 120 MB 280 MB 

 

      Figure 5 shows the latency distribution for Flask and web2py under 100 concurrent clients. Flask demonstrates a lower 

median latency and a narrower interquartile range compared with web2py, indicating both faster and more consistent 

response times. 

 
Figure 5: Latency distribution (boxplots) for Flask and web2py under 100 concurrent clients 

      Flask exhibits a markedly lower median latency and a narrower interquartile range than web2py under 100 concurrent 

clients. This indicates that Flask responds not only faster but also more consistently, even as concurrency increases. The 

smaller spread of values suggests reduced jitter and improved request-handling stability. In contrast, web2py’s wider range 

reflects higher response variability caused by its heavier processing stack. 

Across all concurrency levels (10 – 200 clients), Flask sustains significantly higher throughput than web2py. Its 

performance remains stable even as client load quadruples, showing strong horizontal scalability. The throughput decline 

for web2py beyond 50 clients illustrates increasing request contention and internal bottlenecks. These results confirm 

Flask’s leaner architecture delivers superior request-handling efficiency. 

During a representative 100-client trial, Flask consistently maintained lower CPU utilisation and memory consumption 

than web2py. The smoother CPU and memory traces for Flask indicate more efficient resource scheduling and garbage 

collection. By contrast, web2py exhibited periodic spikes, signalling heavier background operations from its integrated 

components. Overall, Flask’s lighter footprint translates into better runtime efficiency and energy economy. 

Collectively, Figures 5–7 demonstrate Flask’s consistent superiority across all performance dimensions. It achieves faster 

and more stable response times, higher throughput under increasing client loads, and lower CPU and memory consumption 

throughout execution. These results confirm that Flask’s lightweight, modular design provides greater scalability and 

runtime efficiency than the more tightly integrated web2py framework. Consequently, Flask emerges as the more suitable 

option for deploying high-performance, resource-efficient AI microservices. 

4.2 Linking Design Philosophy to Scalability and Performance 

The quantitative results obtained directly reinforce the qualitative observations presented earlier. The critical 

divergence between the two frameworks lies in their underlying design philosophies. 

1. Flask (Composable Micro-framework): Flask’s unopinionated and modular architecture enables developers to 

assemble only the components required for a given application. This composability results in a lightweight and 

efficient runtime with minimal overheads, particularly suited to stateless AI inference services. When scaling is 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  22 

necessary, Flask-based microservices can be readily deployed as multiple instances behind a load balancer, 

aligning with cloud-native, containerised environments that favour horizontal scaling. 

2. web2py (Integrated Full stack): By contrast, web2py adopts a convention-over-configuration approach that 

accelerates initial development and reduces the learning curve. However, its tightly integrated stack, including the 

built-in Database Abstraction Layer (DAL) introduces additional processing layers. While these features simplify 

application development, they add runtime overhead and constrain optimisation for high-throughput AI workloads. 

Although web2py can be scaled, its monolithic structure provides less flexibility for fine-grained horizontal 

scaling compared with Flask. 

3.  

 
Figure 6: Throughput comparison for Flask and web2py at varying concurrency levels (10–200 clients) 

 
Figure 7: CPU and memory utilisation over time during a representative 100-client trial 

        The distinction between the frameworks, therefore, reflects a practical trade-off: web2py offers faster development 

and ease of prototyping, whereas Flask delivers stronger performance, resource efficiency, and scalability in production 

contexts. These differences are illustrated in Figure 5, which depicts deployment and scaling options for Flask and web2py 

microservices across alternative topologies. 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  23 

 

 
Figure 5: Deployment and scaling options for flask and web2py microservices across alternative topologies 

4.3 web2py Advantages 

web2py’s integrated design emphasises simplicity and rapid development. Its built-in Database Abstraction Layer 

(DAL) reduces reliance on external ORMs by automatically mapping Python objects to relational databases, lowering the 

learning curve for developers with limited SQL expertise [24]. The framework’s web-based development environment 

further accelerates prototyping, allowing applications to be designed, tested, and deployed directly through the browser. 

These features make web2py particularly effective in educational contexts and small- to medium-sized projects, where 

rapid iteration and reduced configuration overhead are priorities. Unlike Flask, which requires careful extension 

management, web2py offers a convention-driven approach that minimises setup complexity while maintaining support for 

robust MVC-based development. 

4.4 Trade-offs in Academic and Industrial Contexts 

The choice of framework depends strongly on context. 

1. Academia: In research labs and classrooms, web2py’s strengths, rapid development, DAL integration, and a 

gentle learning curve, reduce the barrier to entry. Prototypes can be produced quickly, enabling focus on 

experimental AI modelling rather than infrastructural details. 

2. Industry: For production-grade systems requiring scale, modularity, and robust integration with CI/CD pipelines, 

Flask emerges as the stronger candidate. Its ecosystem and deployment flexibility allow it to integrate with 

enterprise infrastructures (e.g., cloud-native architectures, monitoring frameworks). 

This trade-off can be visualised in Figure 6, where web2py aligns with academic prototyping while Flask aligns with 

industry-grade microservices. 

4.5 Discussion 

The comparative results highlight that there is no one-size-fits-all solution. Instead, the frameworks should be viewed 

as complementary: 

1. Flask for long-term, scalable AI services that need integration into production environments. 

2. web2py for short-cycle research or pedagogical projects where time-to-deployment and reduced complexity are 

critical. 

This nuanced perspective builds on, but also goes beyond, earlier anecdotal accounts in the literature. Unlike previous 

work, this evaluation is grounded in a consistent AI workload implemented across both frameworks, providing a more 

empirical foundation for framework selection in AI microservices. 

4.5.1 Comparison with existing systems 

 Previous comparative studies of Python-based web frameworks have largely concentrated on traditional web 

application performance rather than AI-oriented microservice workloads. Nevertheless, where comparable metrics are 

available, the findings of this study are broadly consistent with earlier research showing that lightweight frameworks such 

as Flask tend to achieve lower latency and reduced CPU utilisation compared with more integrated frameworks like 

web2py. For example, Petrucci et al. [34] reported similar throughput advantages for minimal WSGI-based applications 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  24 

when subjected to synchronous HTTP loads, while Buyya et al. [35] highlighted the additional runtime overhead 

introduced by layered abstractions such as web2py’s Database Abstraction Layer (DAL). 

 

 
Figure 6: Trade-off map illustrating priorities of academic developers versus industry practitioners in framework adoption 

In cases where direct comparison was not possible owing to differences in datasets or experimental configurations, 

normalised performance ratios were applied to enable approximate benchmarking (see Table 2). Overall, the observed 

performance hierarchy aligns with architectural expectations: frameworks optimised for minimal request handling 

generally outperform integrated solutions under equivalent workloads, supporting the view that simplicity and modularity 

enhance responsiveness in AI microservice deployments. 

4.6 Limitations 

Several limitations of this study should be acknowledged. 

First, all experiments were conducted on a single CPU-based workstation; GPU-backed inference, distributed 

deployments, and container orchestration (for example, via Kubernetes) were not examined. 

     Second, the evaluation covered only two Python web frameworks, Flask and web2py, which, although representing 

contrasting architectural philosophies, may not fully capture the behaviour of asynchronous-first frameworks such as 

FastAPI or enterprise-scale platforms such as Django. 

Third, the workload employed a logistic-regression model to represent lightweight inference tasks and may not 

generalise to more computationally intensive deep-learning workloads or streaming-based AI pipelines. 

Finally, network latency and variability typical of cloud environments were not modelled. 

These limitations provide a foundation for the extended investigations outlined in the proposed future work. 

4.7 Future Work 

Building on the findings and limitations identified in this study, several directions for further investigation are proposed. 

Future work should, first, extend the framework comparison to include FastAPI in order to capture the benefits of 

asynchronous I/O processing. Second, GPU-accelerated inference should be examined, alongside comparative analyses of 

batch versus single-record inference scenarios. Third, alternative communication protocols such as gRPC should be 

benchmarked against REST endpoints to assess their impact on throughput and latency. Fourth, experiments should be 

replicated in containerised, cloud-based environments (for example, Kubernetes) to evaluate autoscaling behaviour under 

dynamic loads. 

Finally, complementary studies could introduce developer-centric metrics—such as productivity, maintainability, and 

learning effort—gathered through structured user evaluations. These additional experiments would broaden the empirical 

base and strengthen the generalisability of the present findings. 

5. CONCLUSION  

This study has provided a comparative evaluation of Flask and web2py within the context of AI microservices 

development. By implementing an identical AI Microservice Agent in both frameworks, the research isolated framework-

specific characteristics across five dimensions: flexibility, scalability, database support, performance, and ease of learning. 

The findings reveal that Flask is better suited to contexts demanding modularity, integration with external libraries, and 

container-based scalability, whereas web2py offers advantages in rapid prototyping, educational settings, and projects 

where DAL integration and reduced configuration are prioritised.  

The trade-off analysis demonstrated that industry practitioners are likely to favour Flask, owing to its scalability and 

compatibility with modern deployment topologies. At the same time, academics and educators may find web2py more 

accessible for lowering entry barriers to AI microservices experimentation. These complementary strengths underline the 

importance of aligning framework choice with the intended deployment context. 

Drawing on the comparative evidence presented in this study, Figure 7 synthesises the findings into a practical 

framework selection guideline. The decision flow highlights when Flask or web2py is most appropriate, thereby offering 

empirical guidance to researchers, educators, and practitioners seeking to develop AI-driven microservices. 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  25 

 
Figure 7: Framework selection guideline for AI microservices 

Despite these contributions, several limitations must be acknowledged. First, the evaluation was based on a single 

prototype (the AI Microservice Agent) implemented under controlled conditions. While this ensured fairness and 

comparability, it constrains the generalisability of the findings to broader classes of AI workloads, such as GPU-intensive 

deep learning inference or real-time streaming tasks. Second, the scope was limited to two Python-based frameworks. 

Although Flask and web2py embody contrasting design philosophies, newer frameworks such as FastAPI and Django 

microservices are increasingly relevant and may yield different trade-offs. Finally, the study focused on technical metrics; 

dimensions such as long-term maintainability, security, and developer team productivity were outside its scope. 

Future work should address these limitations by extending comparative analyses to include emerging frameworks and 

broader workload profiles. Additional experiments involving GPU acceleration, distributed inference, and streaming 

pipelines would enrich the empirical foundation. Longitudinal studies could further assess maintainability, collaboration 

efficiency, and security in production environments, offering a more holistic view of framework suitability. 

This study reframes framework selection for AI microservices as an empirical rather than anecdotal decision, providing 

actionable insights for academia and industry. Building on these findings, future work should include comparative 

experiments with FastAPI and Django microservices, exploration of GPU-intensive and streaming workloads, container 

orchestration strategies (e.g., Docker Swarm, Kubernetes), and CI/CD integration. Longitudinal studies on maintainability, 

security, and developer productivity would further enrich the empirical base and strengthen the generalisability of the 

framework-selection guidelines proposed in this study. 

     In summary, this work establishes a reproducible baseline for evaluating Python web frameworks in AI microservice 

contexts. Future extensions should build upon this foundation by incorporating asynchronous frameworks such as FastAPI, 

GPU-backed inference, and container-orchestrated deployments (for example, Kubernetes). Further empirical studies 

exploring developer productivity and maintainability would complement the current performance-focused evaluation and 

provide holistic guidance for framework selection across the full lifecycle of AI microservices. 

ACKNOWLEDGEMENTS 

This work was supported by the School of Computer Science and Engineering, Big Data Analytics, University of 

Derby, United Kingdom and the Department of Systems Engineering, University of Lagos, Nigeria. 

REFERENCES 

[1] Rusek, M. & Landmesser, J. (2018), Time complexity of a distributed algorithm for load balancing of microservice-

oriented applications in the cloud, ITM Web Conference, 21, 00018, doi: 10.1051/itmconf/20182100018. 

[2] Di Francesco, P., Lago, P. & Malavolta, I. (2019), Architecting with microservices: A systematic mapping study, 

Journal of Systems and Software, 150, 77–97, doi: 10.1016/j.jss.2019.01.001. 

[3] Dai, F., Liu, G., Xu, X., Mo, Q., Qiang, Z. & Liang, Z. (2022), Compatibility checking for cyber-physical systems 

based on microservices, Software Practice and Experience, 52(11), 2393–2410, doi: 10.1002/spe.3131. 

[4] Fawad, E. (2023), Efficient workload allocation and scheduling strategies for AI-intensive tasks in cloud infrastructures, 

Pakistan Science and Technology, 47(4), 82–102, doi: 10.52783/pst.160. 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  26 

[5] Rajendran, R.M.R. (2022), Cross-platform AI development – A comparative analysis of .NET and other frameworks, 

International Journal of Multidisciplinary Research, 4(6), doi: 10.36948/ijfmr.2022.v04i06.13407. 

[6] Sharma, K., Salagrama, S., Parashar, D. & Chugh, R. (2024), AI-driven decision making in the age of data abundance: 

Navigating scalability challenges in big data processing, Revue d’Intelligence Artificielle, 38(4), 1335–1340, doi: 

10.18280/ria.380427. 

[7] Lin, C., Huang, A. & Yang, S. (2023), A review of AI-driven conversational chatbots implementation methodologies 

and challenges (1999–2022), Sustainability, 15(5), 4012, doi: 10.3390/su15054012. 

[8] Odeh, A., Odeh, N. & Mohammed, A. (2024), A comparative review of AI techniques for automated code generation 

in software development: Advancements, challenges, and future directions, TEM Journal, 13(1), 726–739, doi: 

10.18421/TEM131-76. 

[9] Bai, L. & Zhang, C. (2023), Trace-based microservice anomaly detection through deep learning, Proceedings of SPIE 

12506, International Conference on Computer Vision, Image and Deep Learning, doi: 10.1117/12.2674784. 

[10] Auer, F., Lenarduzzi, V., Felderer, M. & Taibi, D. (2021), From monolithic systems to microservices: An assessment 

framework, Information and Software Technology, 137, 106600, doi: 10.1016/j.infsof.2021.106600. 

[11] Ntentos, E., Zdun, U., Plakidas, K., Meixner, S. & Geiger, S. (2020), Assessing architecture conformance to coupling-

related patterns and practices in microservices, Microservices: Science and Engineering, 3–20, doi: 10.1007/978-3-

030-58923-3_1. 

[12] Hasselbring, W., Wojcieszak, M. & Dustdar, S. (2021), Control flow versus data flow in distributed systems 

integration: Revival of flow-based programming for the industrial internet of things, IEEE Internet Computing, 25(4), 

5–12, doi: 10.1109/MIC.2021.3053712. 

[13] Söylemez, M., Tekinerdogan, B. & Tarhan, A. (2022), Challenges and solution directions of microservice 

architectures: A systematic literature review, Applied Sciences, 12(11), 5507, doi: 10.3390/app12115507. 

[14] Aksakallı, İ., Çelik, T., Can, A. & Tekinerdogan, B. (2021), A model-driven architecture for automated deployment of 

microservices, Applied Sciences, 11(20), 9617, doi: 10.3390/app11209617. 

[15] Laigner, R., Zhou, Y., Salles, M.A.V., Liu, Y. & Kalinowski, M. (2021), Data management in microservices, 

Proceedings of the VLDB Endowment, 14(13), 3348–3361, doi: 10.14778/3484224.3484232. 

[16] Moreschini, S. et al. (2025), AI techniques in the microservices life-cycle: A systematic mapping study, Computing, 

107(4), doi: 10.1007/s00607-025-01432-z. 

[17] Alelyani, A., Datta, A. & Hassan, G. (2024), Optimizing cloud performance: A microservice scheduling strategy for 

enhanced fault-tolerance, reduced network traffic, and lower latency, IEEE Access, 12, 35135–35153, doi: 

10.1109/ACCESS.2024.3373316. 

[18] Aydemir, F. & Başçiftçi, F. (2024), Performance and availability analysis of API design techniques for API gateways, 

Arabian Journal for Science and Engineering, doi: 10.1007/s13369-024-09474-9. 

[19] Ziyatbekova, G., Aralbayev, S. & Kisala, P. (2023), Security issues of containerization of microservices, KazUTB 

Journal, 4(21), doi: 10.58805/kazutb.v.4.21-198. 

[20] Chen, C. & Liu, C. (2021), Person re-identification microservice over artificial intelligence internet of things edge 

computing gateway, Electronics, 10(18), 2264, doi: 10.3390/electronics10182264. 

[21] Megargel, A., Shankararaman, V. & Walker, D. (2020), Migrating from monoliths to cloud-based microservices: A 

banking industry example, Advances in Information Systems Development, 85–108, doi: 10.1007/978-3-030-33624-

0_4. 

[22] Aitlmoudden, O., Housni, M., Safeh, N. & Namir, A. (2023), A microservices-based framework for scalable data 

analysis in agriculture with IoT integration, International Journal of Interactive Mobile Technologies, 17(19), 147–156, 

doi: 10.3991/ijim.v17i19.40457. 

[23] Saucedo, A. & Rodríguez, G. (2024), Migration of monolithic systems to microservices using AI: A systematic 

mapping study, Proceedings of CIBSE 2024, 1–15, doi: 10.5753/cibse.2024.28435. 

[24] Miles, M. (2016), Using web2py Python framework for creating data-driven web applications in the academic library, 

Library Hi Tech, 34(1), 164–171, doi: 10.1108/LHT-08-2015-0082. 

[25] Hussein, S., Lahami, M. & Torjmen, M. (2023), Assessing the quality of microservice and monolithic architectures: 

Systematic literature review, Research Square, doi: 10.21203/rs.3.rs-3497708/v1. 

[26] Hassan, S., Bahsoon, R. & Buyya, R. (2022), Systematic scalability analysis for microservices granularity adaptation 

design decisions, Software Practice and Experience, 52(6), 1378–1401, doi: 10.1002/spe.3069. 

[27] Ramu, V.B. (2023), Performance impact of microservices architecture, Review of Contemporary Science and 

Academic Studies, 3(6), doi: 10.55454/rcsas.3.06.2023.010. 

[28] Kazanavičius, J., Mažeika, D. & Kalibatienė, D. (2022), An approach to migrate a monolith database into multi-model 

polyglot persistence based on microservice architecture, Applied Sciences, 12(12), 6189, doi: 10.3390/app12126189. 

[29] Beaulieu, N., Dascalu, S.M. & Hand, E. (2022), API-first design: A survey of the state of academia and industry, 

Proceedings of the International Conference on Information Technology – New Generations, 73–79. 

[30] Shadija, D., Rezai, M. & Hill, R. (2017), Towards an understanding of microservices, Proceedings of the International 

Conference on Advanced Computing, doi: 10.23919/IConAC.2017.8082018. 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2026.0901.02-j                Idowu et al. 

Volume 9, Issue 1 

https://doi.org/10.53982/ajerd  27 

[31] Hevner, A.R., March, S.T., Park, J. & Ram, S. (2004), Design science in information systems research, MIS Quarterly, 

28(1), 75–105, doi: 10.2307/25148625. 

[32] Gregor, S. & Hevner, A.R. (2013), Positioning and presenting design science research for maximum impact, MIS 

Quarterly, 37(2), 337–355, doi: 10.25300/MISQ/2013/37.2.01. 

[33] Merkel, D. (2014), Docker: Lightweight Linux containers for consistent development and deployment, Linux Journal, 

2014(239), 2. 

[34] Petrucci, A., Massari, L. & Santucci, G. (2022), Web application performance benchmarking methodologies, Journal 

of Systems and Software, 182, 111078, doi: 10.1016/j.jss.2021.111078. 

[35] Buyya, R., Calheiros, R.N. & Li, X. (2018), High Performance Cloud Computing: Metrics and Benchmarks, Springer, 

doi: 10.1007/978-3-319-77434-1. 

https://doi.org/10.53982/ajerd.2026.0901.02-j
https://doi.org/10.53982/ajerd

