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Abstract: The quadrotor control as nonlinear and underactuated systems is a huge challenge in getting a fine stabilization and 

trajectory tracking. The present work seeks to introduce a novel hybrid control structure composed of an Internal Model Control-based 

Proportional-Integral (IMC-PI) controller, with the integration of a Sliding Mode Controller (SMC) and an Extended State Observer 

(ESO). The main purpose is to achieve improvement of stability and tracking performance under dynamic flight operations. A six 

degrees of freedom (6-DoF) dynamic model is developed under rigid body structure and proportional thrust-drag assumptions. An IMC-

PI controller is initially employed to stabilize the Euler angles and vertical position but is not able to control the lateral positions (x and 

y). For this, a hybrid SMC-ESO method is incorporated for enhanced robustness along with precise path tracking. Simulation results 

reveal that while the stand-alone IMC-PI controller can stabilize altitude and orientation within 3 seconds, it cannot converge to the 

complete position. Nevertheless, the hybrid controller achieves very precise moving in complex trajectories (helical and figure-eight) 

within 25 seconds, which outperforms the stand-alone solution. The results confirm the viability of the hybrid controller in autonomous 

UAV operations where stability and precision are of particular importance. 

Keywords: Quadrotor Control, IMC, PI Controller, Nonlinear Dynamic Inversion, SMC, ESO 

1. INTRODUCTION 
A quadrotor is a type of unmanned aerial vehicle (UAV) having four motors in its design, and it is capable of vertical 

take-off and landing (VTOL) and making sharp turns. The design is generally in the form of two clockwise motors and two 

counterclockwise motors, providing equal torques to stabilize the plane when it is flying [1]. While structurally 

straightforward and mechanically balanced, the quadrotor is underactuated and significantly nonlinear with six degrees of 

freedom (DoF) and four control inputs (motor thrusts), thus stabilizing and controlling the quadrotor is a nontrivial issue 

[2], [3]. 

Precise control of roll, pitch, yaw, and translational motion is achieved by varying the rotational speeds of the 

individual motors. Such motions facilitate translation along the directions x–y–z as well as rotation about its three principal 

axes [4], [5]. Nevertheless, stable and precise control of these motions, particularly in the presence of external disturbances 

or model uncertainties, is a pervasive challenge in current UAV research. Advances in embedded systems, sensors, and 

control theory have pushed the application of quadrotors to new areas such as surveillance, delivery, precision agriculture, 

and monitoring of the environment [6]. As the number of applications continues to rise with added complexity, there is a 

pressing need for advanced control mechanisms that can cope with limitations of traditional controllers such as PID and 

LQR, which have a tendency to assume linearity and are not robust enough to handle dynamic nonlinearities or external 

disturbances in real-world environments [7]. 

While different nonlinear control techniques have been proposed, most of them either involve high computational 

complexity or lack robustness against system uncertainties and unmodeled dynamics [8]. Surprisingly, the traditional 

controllers such as PID are very efficient when dealing with near-hover maneuvers but are not up to the mark when 

aggressive maneuvers or operating on a trajectory tracking mission is involved [9]. On the other hand, sliding mode control 

(SMC) is disturbance robust but normally sensitive to chattering and may require accurate system modeling [10]. Besides, 

single internal model control (IMC)-based methods perform well for systems whose models are available but less so with 

unmodeled dynamics or disturbance rejection [11]. 

To address these concerns, in this work, a hybrid control scheme comprising an IMC-based PI controller and an SMC 

augmented by an Extended State Observer (ESO) is adopted. The IMC-based PI controller provides fast and stable 

stabilization of the Euler angles and vertical motion with relatively low complexity [12], [13]. The SMC augmented with 
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ESO is capable of overcoming external disturbances and model uncertainties effectively and can thus be utilized for 

accurate tracking of trajectories [14], [15]. The hybrid method benefits from the good points of both methods: IMC's 

predictive and tuning simplicity and SMC-ESO's robustness and disturbance rejection capability. 

Accordingly, in this paper, a comprehensive mathematical model of the quadrotor is formulated, nonlinear vehicle 

dynamics are simulated, and the hybrid control approach is utilized for enhanced stabilization and precise path tracking 

during intricate maneuvers. This extends new insight to how hybrid control structures enhance trajectory tracking in 

underactuated UAV systems, and will be used as a foundation for future practical implementation under disturbance and 

noise. 

2. LITERATURE REVIEW 

Quadrotors or quadrotors have evolved significantly since their invention in the early 20th century. Manned vertical 

take-off and landing (VTOL) vehicles were the first successful models, but their performance was compromised due to 

lack of adequate stability augmentation and high pilot workload [7]. As time elapsed, advances in computational power, 

modeling techniques, and control theory enabled the transition from rudimentary linear control methods to sophisticated 

nonlinear methods, culminating in the creation of modern unmanned aerial vehicles (UAVs) [6]. The historical 

development of quadrotor technology is described in this paper, recent mathematical modeling and control algorithm 

advances are reviewed, and their applications in various fields are discussed. 

2.1 Historical Development and Early Challenges 

The pioneering quadrotors of the 1920s and 1930s were among the first VTOL aircraft to enjoy success. Instability and 

workload for the pilots were the prominent problems of early prototypes, which limited their deployment in practice [3]. It 

was only for the first time that linear control techniques were implemented to minimize computations and offer stability in 

flight. Although these approaches worked well for small perturbations near equilibrium points, they tended to miss the 

complete nonlinear dynamics of the system and thus performed sub-optimally in real-world applications [8]. 

2.2 Modeling of Quadrotor Dynamics 

A full understanding of quadrotor dynamics requires complex mathematical modeling, both kinematics and dynamics. 

Kinematics prescribes the quadrotor motion without considering the acting forces, while dynamics prescribes the forces 

and moments which create this motion [9]. Nonlinear state equations were recently built on both Newton-Euler and Euler-

Lagrange formulations, providing a robust basis for the study of quadrotor behavior subject to external disturbances [10]. 

For instance, [11] provided a lower-order model that did not capture all aerodynamic effects but was still able to stabilize 

and track using proportional-derivative (PD) controllers. The authors did note that unmodeled effects such as wind could 

compromise performance and that more robust techniques are required. 

2.3 Stability and Trajectory Tracking Control Algorithms 

The choice of the control algorithm has a direct bearing on determining the performance of a quadrotor. Traditional 

methods, i.e., proportional-integral-derivative (PID) control, are also common due to simplicity and robustness near hover 

states [12]. However, PID controllers suffer with large disturbances and nonlinear dynamics. To combat such limitations, 

newer methods such as sliding mode control (SMC), backstepping control, and adaptive control have been explored [13]. 

For example, [14] had blended a PD controller with heuristics for minimizing the influence of external perturbations so 

that the system tracks the path more effectively. Similarly, [15] recommended a hybrid controller that incorporates optimal 

elements of some algorithms, despite acknowledging that any one method may not be best under all aspects of 

performance metrics such as robustness, flexibility, and following accuracy. Yan et al. [28] proposed a multi-constraint 

model predictive control (MPC) approach that incorporates a Kalman-consistent filter alongside a fixed-time disturbance 

observer. This combination improves the controller’s robustness and suitability for complex environments, while also 

enhancing computational performance. 

To create a closer comparison between other control methods, Table 1 summarizes popular control methods used in the 

application of quadrotor systems, evaluated with respect to stability, robustness, and computational load. This comparison 

highlights the importance of pursuing a hybrid IMC-based PI and SMC-ESO method since it achieves the best balance of 

simplicity, robustness, and performance in the regulation of the quadrotor's nonlinear and underactuated dynamics. 

2.4 Applications and Future Directions 

Quadrotors have also been discovered to exhibit various applications such as in surveillance, agriculture, and 

environment observation. An example is [14] developing a quadrotor for games count in African national parks in line with 

such properties as durability, agility, and minimal noise production. It was discovered by the study that the use of hybrid 

control systems presented a balance of performance against flexibility, while sacrifices are inevitable according to 

application. In addition, [16] developed a nonlinear flight mechanics model and implemented it with MATLAB/Simulink 

and demonstrated the effectiveness of automatic tuning methods, of Gradient Descent algorithm, compared to manual 

tuning. Existing work has also explored autonomous flight capabilities, with [17] proposing an integrated PID-

backstepping collision avoidance system. This proposed solution enabled the quadrotor to perform complex maneuvers 

like take-off, hovering, and collision avoidance, which was a major advancement in UAV technology. Optimization of 

performance across various environmental conditions remains to be achieved, calling for further research into adaptive and 

robust control methods 
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Table 1: Comparison of various control techniques 

Control Method Stability Robustness to 

Disturbance/Uncertainty 

Computational 

Complexity 

Remarks 

PID Moderate Low to Moderate Low Works well near hover; poor 

performance under strong 

nonlinearities 

Backstepping High Moderate High Handles nonlinearity but 

complex for multi-DoF systems  

Sliding Mode 

Control (SMC) 

High High Moderate Robust but prone to chattering; 

effective for underactuated 

systems 

Adaptive Control High High High Adjusts to parameter 

variations; may require 

persistent excitation 

Model Predictive 

Control (MPC) 

High High Very High Handles constraints well; 

computationally expensive 

IMC Moderate Low to Moderate Low Simple to implement; poor 

disturbance rejection without 

augmentation 

ESO High Very High Moderate to High Combines robustness with 

online disturbance estimation 

 

3. METHODOLOGY 

3.1 Mathematical Modelling 

To fully comprehend the quadrotor system dynamics, understanding the concept of six degrees of freedom (6-DoF) that 

outlines the position and orientation of the vehicle in three-dimensional (3D) space is critical. The 6-DoF model comprises 

three translational degrees of freedom motion along the x, y, and z axes, and three rotational degrees of freedom, roll, pitch, 

and yaw as shown in Figure 1. These freedoms of the quadrotor altogether decide the quadrotor's ability to navigate, 

stabilize, and perform complex flight maneuvers within a 3D space. 

 

Figure 1: Six degrees of freedom [18] 

6-DoF is the orientation and body position described in six coordinates divided into two frames of reference. The 

inertial frame (or earth frame), a stationary coordinate system defined by the axes x, y, and z, usually pointing in cardinal 

directions North, East, and Down, is the first one. The second is the body frame, which is a translating coordinate system 

relative to the quadrotor's center of gravity, specified by the roll (𝜙), pitch (𝜃) and yaw (𝜓) angles. These are the 

orientation angles of the quadrotor relative to its body frame. This complexity of the system requires simplifying 

assumptions so that the system can be modeled and controlled effectively. Common assumptions are [19]: 

i. Rigid structure: The frame of the quadrotor is considered rigid, with no deformation under flight. 

ii. Axis symmetry: Symmetry occurs on the axes of the structure to facilitate easier analysis for forces and moments. 

iii. Center of gravity alignment: The center of gravity is at the origin of the body-fixed frame. 

iv. Rigid propellers: The rigid assumption is that the propellers don't bend or flex under operational conditions. 

v. Thrust and drag proportionality: Both thrust and drag forces are proportional to the square of the rotational speed of 

the propeller. 
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3.1.1 Euler angles 

Euler angles, which were named by Leonhard Euler, are three angles giving a description of the rigid body’s orientation 

in a reference system. Euler angles tend to be useful in finding the link between two reference systems and changing the 

coordinates from one frame to another. For quadrotors, the Euler roll (𝜙), pitch (𝜃) and yaw (𝜓) angles represent rotation 

around the x, y, and z axes of the body frame, respectively. These angles indicate by how much the quadrotor is tilted or 

rotated away from the initial position. Rigid body orientation can be found by multiplying these three Euler angles together. 

The rotation matrices, which transform coordinates from one frame to another, i.e the rotation about the x, y, and z-axes, 

are given by [20], [21]: 

𝑅𝑥(𝜙) = [

1 0 0
0 𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙)

0 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)
]             (1) 

  𝑅𝑦(𝜃) = [
𝑐𝑜𝑠(𝜃) 0 𝑠𝑖𝑛(𝜃)

0 1 0
−𝑠(𝜃) 0 𝑐(𝜃)

]             (2) 

𝑅𝑧(𝜓) = [
𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛(𝜓) 0

𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 0
0 0 1

]             (3) 

The rotation matrix R, describes the link between the earth frame (inertial frame) and the body frame of the quadrotor is 

constructed using the Euler angles ϕ (roll), θ (pitch), and ψ (yaw) given as Equation (4). 

𝑅 = 𝑅𝑧(𝜓) × 𝑅𝑦(𝜃) × 𝑅𝑥(𝜙)             (4) 

𝑅 = [

𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜓) − 𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜓) + 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜓)

𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜓) 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜓) + 𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜓) 𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜓) − 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜓)

−𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜃)
] (5) 

R is orthogonal such that 𝑅−1 = 𝑅𝑇. 

3.1.2 Reference frame transformation 

Let [𝑥  𝑦  𝑧  𝜙  𝜃  𝜓]𝑇  represent a vector containing the positions in the inertial frame, Also, let 
[𝑢  𝑣  𝑤  𝑝  𝑞  𝑟]𝑇  denote a vector of the velocities in the quadrotor body frame. Generally, the derivative of the angular 

positions should yield angular velocities [3]. However, since the angular positions and the velocities mentioned above are 

defined in different inertial and body frames (reference frames), a transformation matrix is required to convert quantities 

from one frame to the other. This transformation will ensure consistency and accuracy when analysing the quadrotor's 

motion. Also, let 𝜉 = [𝑥  𝑦  𝑧]𝑇 𝑎𝑛𝑑 𝜂 = [𝜙  𝜃  𝜓]𝑇 , let 𝑣𝐼 = [�̇�  𝑦  ̇ �̇�]𝑇 𝑎𝑛𝑑 𝜔𝐼 = [�̇�  𝜃  ̇ �̇�]
𝑇

and let 

𝑣𝐵 = [𝑢  𝑣  𝑤]𝑇 𝑎𝑛𝑑 𝜔𝐵 = [𝑝  𝑞  𝑟]𝑇. 

From this statement, 𝑣𝐼 ≠ 𝑣𝐵  𝑎𝑛𝑑 𝜔𝐼 ≠ 𝜔𝐵, instead: 

𝑣𝐼 = 𝑅 ∙ 𝑣𝐵                (6) 

𝜔𝐼 = 𝑊𝜂
−1 ∙ 𝜔𝐵               (7) 

[

�̇�

�̇�
�̇�

] = [

1 𝑠𝑖𝑛(𝜙)𝑡(𝜃) 𝑐𝑜𝑠(𝜙)𝑡(𝜃)

0 𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙)

0 𝑠𝑖𝑛(𝜙)

𝑐𝑜𝑠(𝜃)
𝑐𝑜𝑠(𝜙)

𝑐𝑜𝑠(𝜃)

] [
𝑝
𝑞
𝑟
]          (8) 

Conversely, 

𝜔𝐵 = 𝑊𝜂 ∙ 𝜔𝐼                (9) 

[
𝑝
𝑞
𝑟
] = [

1 0 −𝑠𝑖𝑛(𝜃)

0 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜃)

0 −𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜃)
] [

�̇�

�̇�
�̇�

]              (10) 

Because rotational dynamics are computed in the body frame, but measurements (like position and velocity) are mostly in 

the inertial frame, a transformation is needed. The rotation matrix that can be derived from Euler angles offers this 

transformation so that control laws are aligned with physical orientation. 

3.1.3 Rotational motion 

The quadrotor is modeled as a rigid body, its dynamics can be described using Euler's equations for rigid body motion. 

These equations relate the angular velocities and moments acting on the body to its rotational dynamics. In the body-fixed 

frame, the dynamics equation is expressed as [22]: 
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𝐼�̇�𝐵 + [𝜔𝐵 × (𝐼𝜔𝐵)] + 𝛤 = 𝜏𝐵            (11) 

It’s assumed that the quadrotor is in a symmetric structure with the four arms closely with the body x and y-axes. 

Therefore, the inertia tensor I becomes diagonal and the moments of inertia about the x and y axes are equal (𝐼𝑥𝑥 = 𝐼𝑦𝑦). 

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]               (12) 

The gyroscopic movement (forces)  𝛤 arise due to the combined rotational motion of the four motors and the body of the 

quadrotor, this is given in equation (13). 

𝛤 = ∑ 𝐽𝑟(𝜔𝐵 ∧ �̂�3)(−1)𝑖+1𝜔𝑟𝑖

4

𝑖=1
           (13) 

In matrix form, 

𝛤 = 𝐽𝑟𝜔𝐵𝜔𝑟         𝑤ℎ𝑒𝑟𝑒 𝜔𝑟 = −𝜔1 + 𝜔2 − 𝜔3 + 𝜔4         (14) 

The external torque, 

𝜏𝐵 = [𝜏𝜙  𝜏𝜃 𝜏𝜓]
𝑇
               (15) 

The torque of the roll (𝜏𝜙), and that of the pitch torque (𝜏𝜃), are generated by the differential thrust of the motors. typically 

motor 𝑖 = 1  and 𝑖 = 3  are aligned with the roll-axis (x-axis) while motors 𝑖 = 2  and 𝑖 = 4  are aligned with the pitch-

axis (y-axis). 

𝜏𝜙 =  𝛴𝑟 × 𝑇 = 𝑙(−𝑘𝑡𝜔2
2 + 𝑘𝑡𝜔4

2) = 𝑙𝑘𝑡(−𝜔2
2 + 𝜔4

2)         (16) 

𝜏𝜃 = 𝛴𝑟 × 𝑇 = 𝑙(−𝑘𝑡𝜔1
2 + 𝑘𝑡𝜔3

2) = 𝑙𝑘𝑡(−𝜔1
2 + 𝜔3

2)          (17) 

For the yaw-axis, the torque that is created around the motor axis is a result of the reactive torques generated by the 

spinning propellers. Since the motor axis is aligned with the z-direction in the quadrotor body frame, the yaw torque (𝜏𝜓) is 

influenced by the speed of rotation of the motors and their direction of rotation. The yaw torque expression is given by 

equation (18).  

𝜏𝜓 = (−1)𝑖+1𝑘𝑏𝜔𝑖
2 + 𝐼𝑚�̇�𝑖             (18) 

where the term (−1)𝑖+1 is introduced to account for the clockwise (positive) and anticlockwise (negative) rotation of the 

𝑖𝑡ℎ propeller. Additionally, 𝐼𝑚�̇�𝑖 is the moment of inertia of the motor and propeller, this can be ignored in steady-state 

condition, because �̇�𝑖 ≈ 0. 
The overall torque about the z-axis is therefore simplify as equation (19). 

𝜏𝜓 = 𝑘𝑏(−𝜔1
2 + 𝜔2

2 − 𝜔3
2 + 𝜔4

2)            (19) 

The torque matrix is also therefore written as equation (20). Physically, each motor contributes to torque about the axes of 

the quadrotor based on its position and direction of spin. Roll and pitch torques result from differences in thrust between 

opposing motors, and yaw torque results from direction of spin and drag. Torque distribution equation expresses these as a 

matrix equation between motor angular velocities and net torque productions. 

𝜏𝐵 = [

𝜏𝜙

𝜏𝜃

𝜏𝜓

] = [

𝐿𝑘𝑡(−𝜔2
2 + 𝜔4

2)

𝐿𝑘𝑡(−𝜔1
2 + 𝜔3

2)

𝑘𝑏(−𝜔1
2 + 𝜔2

2 − 𝜔3
2 + 𝜔4

2)

]           (20) 

where 𝑘𝑡 denotes the coefficient of thrust, 𝑘𝑏 denotes drag’s coefficient, while 𝐿 is distance between the quadrotor motor 

and the mass center. 

3.1.4 Translational motion 

To model, the linear dynamic of a quadrotor, Newtonian mechanics are employed, the extraneous forces against the 

system include gravitational force, thrust forces from the motors, and aerodynamic drag forces [3], [29] equation (21). 

�̇�𝑣1 = [
0
0

−𝑚𝑔
] + 𝑅𝑇𝐵 + 𝐹𝐷             (21) 

The drag force 𝐹𝐷 represents the resistance experienced by the quadrotor as it moves through the air. This force is due 

to air resistance or fluid friction, and acts opposite to the direction of motion. To simplify the modeling process, the drag 

force is often approximated to be proportional to the linear quadrotor velocity in all the three spatial directions. 

𝐹𝐷 = −𝑘𝑑𝑣𝐼               (22) 

The 𝑖𝑡ℎ motor angular velocity generates a force 𝐹𝑖, the axis of the motor aligned in the z-direction. When these individual 

forces are combined, they produce a total thrust 𝑇 acting in the z-axis of the body frame given in equation (23). 
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𝑇 = ∑ 𝐹𝑖 =4
𝑖=1 𝑘𝑡 ∑ 𝜔𝑖

24

𝑖=1
             (23) 

Since the thrust acts in the direction of the z-axis: 

𝑇𝐵 = [
0
0
𝑇
] = 𝑘𝑡 [

0
0

𝛴𝑖=1
4 𝜔𝑖

2
]             (24) 

Based on the earlier discussed rotational dynamics, Equation (11) can be rephrased as equation (25) in state-space. 

�̇�𝐵 = 𝐼−1(−𝜔𝐵 × (𝐼𝜔𝐵) − 𝛤 + 𝜏𝐵 )           (25) 

     �̇�𝐵 = 𝐼−1 ([
𝑝
𝑞
𝑟
] × [

𝐼𝑥𝑥𝑝
𝐼𝑦𝑦𝑞

𝐼𝑧𝑧𝑟
] − 𝐽𝑟 [

𝑝
𝑞
 𝑟

] 𝜔𝑟 + 𝜏𝐵  )          (26) 

[
�̇�
�̇�
�̇�

] =

[
 
 
 
 

(𝐼𝑦𝑦−𝐼𝑧𝑧)𝑞𝑟

 𝐼𝑥𝑥
(𝐼𝑧𝑧−𝐼𝑥𝑥)𝑝𝑟

 𝐼𝑦𝑦

(𝐼𝑥𝑥−𝐼𝑦𝑦)𝑝𝑞

 𝐼𝑧𝑧 ]
 
 
 
 

− 𝐽𝑟 [

𝑞

 𝐼𝑥𝑥
−𝑝

 𝐼𝑦𝑦

 0

] 𝜔𝑟 +

[
 
 
 

𝜏𝜙

 𝐼𝑥𝑥
𝜏𝜃

 𝐼𝑦𝑦

 
𝜏𝜓

 𝐼𝑧𝑧]
 
 
 

          (27) 

From the earlier discussed linear dynamics, equation 21 can now be expressed as equation (28). 

[
�̈�
�̈�
�̈�

] = −𝑔 [
0
0
1
] +

𝑇

𝑚
[

𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙) + 𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜙)

𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙) + 𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜙)

𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)

] −
1

𝑚
[

𝑘𝑑𝑥 0 0
0 𝑘𝑑𝑦 0

0 0 𝑘𝑑𝑧

] [
�̇�
�̇�
�̇�

]     (28) 

3.2 Quadrotor System Stabilization 

A quadrotor is an underactuated system because it has only four motor speeds (control inputs) but six outputs of 

interest: position [x, y, z] and orientation [ϕ, θ, ψ]. To address this challenge, the control problem is typically divided 

into two separate control loops, which are the attitude control and position control loops: Manages the linear motion states. 

The overall control architecture for the quadrotor is given in Figure 2, while the simulation Simulink is as shown in Figure 

3. 

3.2.1 Internal model control-based proportional integral derivative control 

 The Internal Model Control (IMC) framework is a strategy that is model-based, which uses a process model to improve 

controller performance. The general structure of an IMC-based PID controller contains process model, controller, feedback 

filter, desired state and the current state. The process model 𝐺𝑝(𝑠) represents the dynamic relationship between the control 

inputs (motor angular velocities) and the outputs (attitude and position), this was to predict the system's behavior [23], [24]. 

 

 

Figure 3: Control Architecture 
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Figure 4: Simulation Simulink  

The controller, Q(s) in equation (29) is designed based on the inverse of the process model in equation (30), while the low-

pass filter 𝐹 is given as equation (31). By comparing equation (30) with the standard PID controller, it shows that PI 

controller was enough to give the best response, and 𝑇𝑖 = 𝑇𝑝. 

𝑄(𝑠) = 𝐺𝑝
−1(𝑠) × 𝐹(𝑠)             (29) 

𝐺𝑝
−1 = 

𝐾𝑝

[𝑇𝑝𝑠]+1
(𝑠) × 𝐹(𝑠)            (30) 

𝐹(𝑠) =
1

(𝜆𝑠+1)𝑛
              (31) 

The error 𝑒(𝑡) is computed as the difference between the desired state 𝑟(𝑡) and the predicted output of the process model 

𝑦(𝑡) , this is given as Equation (32). The control input 𝑢(𝑡)  in Equation (33) is also computed using the IMC 

controller 𝑄(𝑠). 

𝑒(𝑡) =  𝑟(𝑡) −  𝑦(𝑡)              (32) 

  𝑢(𝑡) = 𝑄(𝑠) × 𝑒(𝑡)              (33) 

where 𝐹(𝑠) is a low-pass filter used to ensure robustness and proper controller behavior, 𝜆 is the filter time constant 

and 𝑛 is the order of the filter, r(t) depicts the desired state, u(t)is the control input, and y(t) is the current or actual state. 𝑇𝑝 

and 𝐾𝑝  are the proportional time constant and the proportional gain of the resulting PID controller through the IMC 

procedures. 

For the control of the quadrotor, the proportional and the integral terms were used. The generated torque is then 

proportional to the velocities. The torques are therefore set to be equal to the controller’s output given in Equation (34) to 

(35). 

𝜏 = 𝐼 × 𝑢(𝑡)               (34) 

[

𝜏𝜙

𝜏𝜃

𝜏𝜓

] =

[
 
 
 
 𝐼𝑥𝑥 (𝑘𝑃𝜙(𝜙𝑑𝑒𝑠 − 𝜙) + 𝑘𝐼𝜙(�̇�𝑑𝑒𝑠 − �̇�))

𝐼𝑦𝑦 (𝑘𝑃𝜃(𝜃𝑑𝑒𝑠 − 𝜃) + 𝑘𝐼𝜃(�̇�𝑑𝑒𝑠 − �̇�))

𝐼𝑧𝑧 (𝑘𝑃𝜓(𝜓𝑑𝑒𝑠 − 𝜓) + 𝑘𝐼𝜓(�̇�𝑑𝑒𝑠 − �̇�))]
 
 
 
 

          (35) 

The angular velocity of its motors is the control input to the quadrotor system. Equation (20) establishes the 

relationship between torque and the square of the motor angular velocities, with three equations with four unknowns. To 

simplify the system, the total thrust, that influences the acceleration along the direction z axis, is set to be 𝑇 = 𝑚𝑔. This 

constraint ensures the quadrotor remains airborne by transforming the thrust equation into the proper reference frame and 

applying a IMC-based PI controller to minimize errors in the z-axis, the system can achieve stable and controlled flight: 

𝑇 = (𝑔 + 𝑘𝑃𝑧(𝑧𝑑𝑒𝑠 − 𝑧) + 𝑘𝐼𝑧(�̇�𝑑𝑒𝑠 − �̇�))
𝑚

𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜃)
         (36) 

We find the angular motor velocities 𝜔𝑚1
2 , 𝜔𝑚2

2 , 𝜔𝑚3
2 , 𝑎𝑛𝑑 𝜔𝑚4

2  in equation (37) by determine first Equation (35) and 

subject it to Equation (20). By simplifying Equation (37) gives Equations (38), (39), (40), and (41) 
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[
 
 
 
 
𝜔𝑚1

2

𝜔𝑚2
2

𝜔𝑚3
2

𝜔𝑚4
2 ]

 
 
 
 

= [

𝑘𝑡 𝑘𝑡 𝑘𝑡 𝑘𝑡

0 −𝑙𝑘𝑡 0 𝑙𝑘𝑡

−𝑙𝑘𝑡 0 𝑙𝑘𝑡 0
−𝑘𝑏 𝑘𝑏 −𝑘𝑏 𝑘𝑏

]

−1

[

𝑇
𝜏𝜙

𝜏𝜃

𝜏𝜓

]          (37) 

   𝜔𝑚1
2 =

𝑇

4𝑘𝑡
−

𝜏𝜃

2𝑙𝑘𝑡
−

𝜏𝜓

4𝑘𝑏
              (38) 

   𝜔𝑚2
2 =

𝑇

4𝑘𝑡
−

𝜏𝜙

2𝑙𝑘𝑡
+

𝜏𝜓

4𝑘𝑏
              (39) 

  𝜔𝑚3
2 =

𝑇

4𝑘𝑡
+

𝜏𝜃

2𝑙𝑘𝑡
−

𝜏𝜓

4𝑘𝑏
              (40) 

  𝜔𝑚4
2 =

𝑇

4𝑘𝑡
+

𝜏𝜙

2𝑙𝑘𝑡
+

𝜏𝜓

4𝑘𝑏
              (41) 

3.2.2 Sliding mode control (SMC) with extended state observer (ESO) 

Sliding Mode Control (SMC) is a robust control strategy that drives the system states to a preset sliding surface and 

maintains them on this surface despite uncertainties and disturbances [25]. The Extended State Observer (ESO) is used to 

estimate and improve for the unmodeled dynamics, external disturbances, and uncertainties [26]. The sliding 

surface (SS) is defined as Equation (42). 

𝑆 = �̇� + 𝜆𝑒               (42) 

where 𝑒 = 𝑥𝑑𝑒𝑠 − 𝑥 is the error of tracking, 𝑥𝑑𝑒𝑠  is the desired state 𝑥 is the actual state, and 𝜆 is the positive constant 

which determines the rate of convergence. The sliding surfaces for the 𝑥, 𝑦, and 𝑧 axes of the quadrotor are given in 

Equations (43), (44), and (45). 

𝑆𝑥 = �̇�𝑥 + 𝜆𝑥𝑒𝑥              (43) 

𝑆𝑦 = �̇�𝑦 + 𝜆𝑦𝑒𝑦              (44) 

𝑆𝑧 = �̇�𝑧 + 𝜆𝑧𝑒𝑧              (45) 

where 𝑒𝑥 = 𝑥𝑑𝑒𝑠 − 𝑥, 𝑒𝑦 = 𝑦𝑑𝑒𝑠 − 𝑦, and 𝑒𝑧 = 𝑧𝑑𝑒𝑠 − 𝑧. 

The control law for SMC consists of two parts: the equivalent control which is the part that compensates for the known 

dynamics of the system, and switching control which is also the part that ensures robustness against uncertainties and 

disturbances. The control input 𝑢 is given by Equation (46). 

                   𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠𝑤              (46) 

where 𝑢𝑒𝑞  is the equivalent control, 𝑢𝑠𝑤 = −𝐾 × 𝑠𝑖𝑛(𝑆), 𝐾 is a positive gain, and 𝑠𝑖𝑛(𝑆) is the signum function. 

The control inputs 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧for the positions in x, y, and z axes of the quadrotor, are given as Equations (47), (48), 

(49). 

  𝑢𝑥 = 𝑢𝑒𝑞,𝑥 − 𝐾𝑥 × 𝑠𝑖𝑛(𝑆𝑥)             (47) 

  𝑢𝑦 = 𝑢𝑒𝑞,𝑦 − 𝐾𝑦 × sin (𝑆𝑦)             (48) 

  𝑢𝑧 = 𝑢𝑒𝑞,𝑧 − 𝐾𝑧 × 𝑠𝑖𝑛(𝑆𝑧)             (49) 

The ESO is used to estimate the total disturbance 𝑑  (including unmodeled dynamics and external disturbances) and 

compensate for it in the control law. The ESO dynamics are given in Equations (50), and (51). 

    �̇� = 𝐴�̂� + 𝐵𝑢 + 𝐿(𝑥 − �̂�)             (50) 

�̂� = 𝐶�̂�               (51) 

where �̂� is the estimated state, �̂� is the estimated disturbance, 𝐴, 𝐵 and 𝐶 are system matrices, and 𝐿 is the observer gain 

matrix. 

The ESO estimates the disturbances in the positions 𝑥, 𝑦, and 𝑧 axes of the quadrotor are given as Equations (52), (53), and 

(54). 

                                                                                          �̂�𝑥 = 𝐶𝑥�̂�𝑥               (52) 

    �̂�𝑦 = 𝐶𝑦�̂�𝑦               (53) 

    �̂�𝑧 = 𝐶𝑧�̂�𝑧               (54) 
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The torques 𝜏𝜙, 𝜏𝜃, and 𝜏𝜓 are computed using the SMC control law and the estimated disturbances as Equations (55) to 

(57). 

𝜏𝜙 = 𝐼𝑥𝑥(𝑢𝑒𝑞,𝜙 − 𝐾𝜙 × sin(𝑆𝜙) − �̂�𝜙           (55) 

𝜏𝜃 = 𝐼𝑦𝑦(𝑢𝑒𝑞,𝜃 − 𝐾𝜃 × sin(𝑆𝜃) − �̂�𝜃            (56) 

𝜏𝜓 = 𝐼𝑧𝑧(𝑢𝑒𝑞,𝜓 − 𝐾𝜓 × sin(𝑆𝜓) − �̂�𝜓           (57) 

The total thrust 𝑇 is computed to maintain the quadrotor's altitude as equation (58). 

𝑇 = (𝑔 + 𝑘𝑒𝑞𝑧 − 𝑘𝐼𝑧 × sin(𝑆𝑧) − �̂�𝑧)
𝑚

𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜃)
         (58) 

The angular velocities of the motors 𝜔𝑚1
2 , 𝜔𝑚2

2 , 𝜔𝑚3
2 , and 𝜔𝑚4

2  are computed also for the SMC with ESO by solving the 

following system in Equation (59). 

[
 
 
 
 
𝜔𝑚1

2

𝜔𝑚2
2

𝜔𝑚3
2

𝜔𝑚4
2 ]

 
 
 
 

= [

𝑘𝑡 𝑘𝑡 𝑘𝑡 𝑘𝑡

0 −𝑙𝑘𝑡 0 𝑙𝑘𝑡

−𝑙𝑘𝑡 0 𝑙𝑘𝑡 0
−𝑘𝑏 𝑘𝑏 −𝑘𝑏 𝑘𝑏

]

−1

[

𝑇
𝜏𝜙

𝜏𝜃

𝜏𝜓

]         (59) 

By simplifying equation (59), gives the individual motor angular velocities as Equations (60 to (62). 

   𝜔𝑚1
2 =

𝑇

4𝑘𝑡
−

𝜏𝜃

2𝑙𝑘𝑡
−

𝜏𝜓

4𝑘𝑏
              (60) 

   𝜔𝑚2
2 =

𝑇

4𝑘𝑡
−

𝜏𝜙

2𝑙𝑘𝑡
+

𝜏𝜓

4𝑘𝑏
              (61) 

   𝜔𝑚3
2 =

𝑇

4𝑘𝑡
+

𝜏𝜃

2𝑙𝑘𝑡
−

𝜏𝜓

4𝑘𝑏
              (62) 

   𝜔𝑚4
2 =

𝑇

4𝑘𝑡
+

𝜏𝜙

2𝑙𝑘𝑡
+

𝜏𝜓

4𝑘𝑏
              (63) 

3.3 Trajectory Tracking 

The primary objective of trajectory tracking is to guide the quadrotor from its present position to a desired one by 

adjusting the angular velocities of its motors [27]. Achieving this however is highly challenging due to the dynamic 

complexity of the quadrotor itself, the challenge still remains finding the correct path. 

3.3.1 IMC-based PI 

To relate the uncontrollable position x and y to the controllable angles of 𝜙 and 𝜃, two assumptions were made: 

i. sin(𝑥) ≈ 𝑥 and cos (𝑥) ≈ 1 

ii. The yaw angle 𝜓 = 0 

These assumptions simplify Equation (28) as Equations (64) to (66). 

�̈�𝑒𝑞 =
𝑇

𝑚
𝜃𝑑𝑒𝑠 −

𝑘𝑑𝑥

𝑚
�̇�𝑒𝑞              (64) 

�̈�𝑒𝑞 =
𝑇

𝑚
𝜙𝑑𝑒𝑠 −

𝑘𝑑𝑦

𝑚
�̇�𝑒𝑞             (65) 

�̈�𝑒𝑞 = −𝑔 +
𝑇

𝑚
−

𝑘𝑑𝑧

𝑚
�̇�𝑒𝑞             (66) 

Equations (64), (65) and (66) can be rewritten as: 

𝜃𝑒𝑞 =
1

𝑇
[𝑚�̈�𝑒𝑞 + 𝑘𝑖𝑥�̇�𝑒𝑞 + 𝑘𝑃𝑥𝑦(𝑥𝑒𝑞 − 𝑥)]           (67) 

𝜙𝑒𝑞 = −
1

𝑇
[𝑚�̈�𝑒𝑞 + 𝑘𝑖𝑦�̇�𝑒𝑞 + 𝑘𝑃𝑥𝑦(𝑦𝑒𝑞 − 𝑦)]          (68) 

𝑇𝑒𝑞 = 𝑚(�̈�𝑒𝑞 + 𝑔) + 𝑘𝑑𝑧�̇�𝑒𝑞              (69) 

𝜙𝑒𝑞, 𝜃𝑒𝑞  and 𝑇𝑒𝑞  described the desired values of the roll angle, pitch angle, and thrust, respectively. 

3.3.2 SMC-ESO 

Two assumptions were made in order to equate the uncontrollable positions x and y to the controllable angles 𝜙 and 𝜃 

using SMC-ESO control strategy: 

i. There is no approximation of small angle 

ii. The desired angle 𝜓 = 0 
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3.4 Simulation Parameters 

The quadrotor is simulated using Table 2 parameter, and the initial conditions of the system is in Table 3, while that of 

Table 3 and Table 4 are the parameters that define the gains and settings for the IMC-based PID and SMC with ESO 

controllers, respectively. 

Table 2: Simulation parameters 

Parameter Value Unit Description 

G 9.81 m/s
2
 Acceleration due to 

gravity 
M 0.558 kg Total mass of the 

quadrotor 
L 0.225 m Distance from the 

center to each 

motor Jr 3.357 × 10−5 kg m
2
 Motors’ moment of 

inertia 
kt 1.980 × 10−6 N/(rad/s)

2
 Motor speed to 

thrust. 
kb 3.140 × 10−7 N.m/(rad/s)

2
 Motor speed to 

torque 
Ixx 5.856 × 10−3 Kg.m

2
 Moments of inertia 

about the x, y, and 

z axes. Iyy 5.856 × 10−3 

Izz 8.801 × 10−3 

kdx 0.25 Kg.m
2
 Drag coefficients 

in the x, y, and z 

directions. kdy 0.25 

kdz 0.25 

Table 3: Initial simulation conditions 

State Value State Value 

X -1 ϕ 6 

Y 1.5 θ -5 

Z 0.5 ψ 2 

Table 4: IMC-based PI controller gain 

Parameter Value Parameter Value 

𝒌𝑷 10.5 𝑘𝐼 0.001 

𝒌𝑷𝝓 12.5 𝑘𝐼𝜙 13.0 

𝒌𝑷𝜽 10.0 𝑘𝐼𝜃 11.6 

𝒌𝑷𝝍 10.0 𝑘𝐼𝜓 11.0 

𝒌𝑷𝒙 0.04 𝑘𝑃𝑦 9.5 

𝒌𝑷𝒛 0.02 𝑘𝐼𝑧 0.05 

 

Table 5 SMC with ESO gains 

Parameter Value Description 

𝑺𝒎𝒄_𝒍𝒂𝒎𝒃𝒅𝒂 20.0 Sliding surface gain 

𝒔𝒎𝒄_𝒆𝒕𝒂 1.2 Switching control gain  

𝒆𝒔𝒐_𝒂𝒍𝒑𝒉𝒂 1.8 ESO Disturbance Estimation Gain 

𝒆𝒔𝒐_𝒃𝒆𝒕𝒂 1.2 ESO Disturbance Rejection Gain 
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4. SIMULATION, RESULTS AND DISCUSSION 

4.1 Simulation and Results 

The quadrotor dynamics is simulated using MATLAB 2023a. The simulation is timed to start at 0.2 second to 8 

seconds total simulation time. The uncontrolled Euler angles of 𝜙, 𝜃 𝑎𝑛𝑑 𝜓 were plotted in Figure 4 and the quadrotor 

positions 𝑥, 𝑦, 𝑧 are plotted in figure 5. Also, the angular velocity of each motor was plotted in Figure 6. 

 
Figure 4: Uncontrolled quadrotor euler angles 𝜙, 𝜃 𝑎𝑛𝑑 𝜓 per time 

 
Figure 5: Uncontrolled quadrotor positions 𝑥, 𝑦, 𝑧 per time 
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Figure 6: Quadrotor control input per time. 

From Figure 4 to Figure 6, its evident that the control input is kept constant with orientation angles unchanged. 

However, the positions x, y, and z tend to be unstable. Therefore, by continuously adjusting the control inputs is important 

to stabilize both quadrotor’s orientation and position. 

4.1.1 Attitude stabilization 

An IMC-based PI controller is applied to the quadrotor system to achieve stabilization in driving the quadrotor states to 

target (zero). The system’s initial conditions are specified in Table 2 remain unchanged. The control gains for the IMC-

based PI controller are manually tuned, and their values are provided in Table 3. The simulation runs with a time interval 

step of 0.01 seconds over a total duration of 8 seconds. The results are illustrated Figure 7 which shows the Euler 

angles ϕ, θ, and ψ; Figure 8 which also shows the angular velocities of the four motors, while Figure 9 shows the 

quadrotor's positional states x, y, and z. From the results, it’s noted that the Euler angles stabilize to zero within 3 seconds, 

while the z-position reaches zero after 2.4 seconds. However, the positions x and y fail to stabilize at zero due to the lack of 

observability in these states. 

 

 

Figure 7: Euler angles per time 

https://doi.org/10.53982/ajerd.2025.0802.19-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2025.0802.19-j                 Abiola et al. 

Volume 8, Issue 2 

https://doi.org/10.53982/ajerd  197 

 

 

Figure 8: Motor angular velocity per time 

 

Figure 9: Quadrotor positions per time 

To address the issue of stability of the x and y, the trajectory tracking concept was employed, to adjust the two 

positions to move to zero. This involved adjusting the desired zero states 𝑥 and 𝑦 to the controllable orientation angles 𝜙 

and 𝜃 states as outlined in equation (47), (48) and (44). An additional proportional controller with gain 𝑘𝑃𝑥𝑦 = 0.0495, 

introduced to move the quadrotor states to the target (zero), and the simulation was conducted with a time step interval of 1 

https://doi.org/10.53982/ajerd.2025.0802.19-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2025.0802.19-j                 Abiola et al. 

Volume 8, Issue 2 

https://doi.org/10.53982/ajerd  198 

second over a total duration of 35 seconds. The results were plotted in Figure 10 as the quadrotor’s motor angular 

velocities, Figure 11 also plotted the Euler angles 𝜙, 𝜃 𝑎𝑛𝑑 𝜓, while Figure 12 shows the modified positions 𝑥, 𝑦 and 𝑧. 

 
Figure 10. Adjusted motor angular velocity per time 

 

 

Figure 11: Adjusted Euler angles per time 
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Figure 12: Adjusted quadrotor positions per time 

The result of the adjustment shows that Euler angles stabilized at zero immediately after 12 seconds, while 

the positional states x, y, and z also reach zero after 23 seconds. The result indicates that the system achieves attitude 

stabilization earlier than positional stabilization, reflecting the inherent challenges with quadrotor dynamics and control. 

4.1.2 Quadrotor trajectory tracking 

Two distinct control strategies are employed and simulated for the helical and figure-eight shape tracks. The first 

strategy employed the IMC-based PI controller, used for the tracking, while the second strategy combined the IMC-based 

PI controller with SMC and ESO. In both of these cases, the simulation is conducted over a duration of 60 seconds to 

analyze and compare their performance. 

A. Trajectory tracking with IMC-based PI controller 

The desired and the corresponding actual trajectories comparison for the Helical trajectory is given in Figure 13. Figure 

14 and Figure 15 describe the coordinate variables (positions x and y), respectively per time. 

 

Figure 13: Desired and actual helical trajectory 
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Figure 14: Position x desired and actual helical trajectory 

 

Figure 15: Position y desired and actual helical trajectory 

Another trajectory in the shape of a figure-eight is simulated, and the results are shown in Figure 16. The graphs 

depicting the position variables x and y over a period of 60 seconds for the figure-eight trajectory are presented in Figure 

17 and Figure 18, respectively. These plots shows the quadrotor's ability to follow complex paths and the performance of 

the strategies in tracking such trajectories. 
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Figure 16: Desired and actual figure-eight trajectory 

 

 

Figure 17: Position x desired and actual figure-eight trajectory 
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Figure 18: Position y desired and actual figure-eight trajectory 

Just like Figure 17 and Figure 18, a similar result is also seen in Figure 14 and Figure 15 where the quadrotor is unable 

to track the desired position trajectory with high precision.  

B Trajectory tracking with SMC-ESO and PI controller 

The SMC-ESO strategy were simulated with the model of the quadrotor alongside an IMC-based PI controller. The 

results for the helical path are presented in Figure 19, which compares the desired trajectory with the actual trajectory by 

the quadrotor. This demonstrates the effectiveness of the hybrid control strategy in tracking complex paths. 

 

Figure 19: Desired and actual helical trajectory 
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Another trajectory path for the figure-eight shape is also simulated and the result is given in Figure 20. 

 

Figure 20: Desired and actual figure-eight trajectory 

In comparison to the result as seen in Figure 13 and Figure 16 using IMC-based PI, the quadrotor in the SMC-ESO with 

IMC-based PI is able to locked accurately on to the desired path.  

4.2 Result Discussions 

A thorough analysis of the IMC-based PI controller as well as its integration with the SMC and ESO's performance for 

stabilization and trajectory tracking is discussed here to identify the most effective control strategy.  

4.2.1 Quadrotor attitude stability 

As discussed previously, the IMC-based PI controller with their control parameters computed in Table 3 successfully 

stabilized the angles ϕ, θ, and ψ hits the desired state within 3 seconds, also the z-position also hit target in 2.4 seconds. 

However, both positions of x and y did not stabilize to the desired state using this control strategy. To address this, the 

desired x and y states were mapped to the controllable orientation angles ϕ and θ, and also proportional controller with 

gain 𝑘𝑃𝑥𝑦  was introduced as additional control scheme to move to the desired state. While this approach achieved 

stabilization, it took significantly more time to stabilize after 12 seconds, and the x, y, z positions also stabilizes after 23 

seconds. During this process, the ϕ, θ, x, and the y states exhibited some overshoots before eventually settling to zero. A 

comparison of the original and adjusted IMC-based PI controlled angle and position variables are shown in Figure 21 and 

22, respectively. 

 
(a)                                                                    (b) 

Figure 21: (a) Angles 𝝓, 𝜽 𝒂𝒏𝒅 𝝍 (b) Adjusted Angles 𝝓, 𝜽 𝒂𝒏𝒅 𝝍 
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(a)                                                           (b) 

Figure 22: Unstable positions x, y and z (b) Adjusted positions x, y and z 

4.2.2 Quadrotor trajectory tracking 

The performance with the two tracking strategies were analyzed, and it was observed that the SMC-ESO with IMC-

based PI control demonstrated superior results. This approach enabled the quadrotor to accurately lock onto the path and 

follow the desired trajectory in a shorter time period compared to the other strategy of only IMC-based PI. Figure 23, 24, 

25, 26, 27 and 28 show the plots of the desired and actual trajectory for 25, 45 and 60 seconds respectively for both the 

IMC-based PI and SMC-ESO with IMC-based PI control using helical and figure-eight trajectory. 

 
(a)                                                 (b)) 

Figure 23: Helical (a) IMC-based PI  (b) SMC-ESO with IMC-based PI control after 25 seconds 

 

 
(a)                                                              (b) 

Figure 24: Figure-eight (a) IMC-based PI  (b) SMC-ESO with IMC-based PI control after 25 seconds 
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(a)                                                              (b) 

Figure 25: Helical (a) IMC-based PI  (b) SMC-ESO with IMC-based PI control after 45 seconds 

 
(a)                                                              (b) 

Figure 26: Figure-eight (a) IMC-based PI  (b) SMC-ESO with IMC-BASED PI control after 45 seconds 

 
(a)                                                              (b) 

Figure 27: Helical (a) IMC-based PI  (b) SMC-ESO with IMC-BASED PI control after 60 seconds 
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(a)                                                              (b) 

Figure 28: Figure-eight (a) IMC-based PI (b) SMC-ESO with IMC-BASED PI control after 60 seconds 

These plots highlighted the improved accuracy and efficiency of the SMC-ESO with IMC-based PI control in tracking 

complex paths. The SMC-ESO with IMC-based PI control was able to accurately hit the target (desired) path after the first 

25 seconds for both helical and figure-eight trajectories, while the system with only the IMC-based PI control is unable to 

lock on the target (desired) path until after 60 seconds for both the helical and figure-eight trajectories. This shows that the 

SMC-ESO with IMC-based PI control is more effective when it comes to tracking paths than the IMC-based PI control. 

Table 6: Control strategies performance comparison 

Metric IMC-based PI SMC-ESO + IMC-based PI 

Euler Angle Settling Time (ϕ, θ, ψ) 3.0 s 2.5 s 

z-Position Settling Time 2.4 s 2.2 s 

x, y Position Settling Time 23.0 s 9.5 s 

Trajectory RMSE (x-axis) 0.68 m 0.23 m 

Trajectory RMSE (y-axis) 0.73 m 0.26 m 

Overshoot in ϕ or θ ~10% <5% 

To quantitatively compare the two control strategies, their performance is reported in Table 6 based on standard control 

measures such as settling time and root mean square error (RMSE) for trajectory tracking. The hybrid controller (SMC-

ESO + IMC-based PI) achieved faster stabilization with Euler angles stabilizing within 2.5 seconds and x, y position within 

9.5 seconds. In contrast to the stand-alone IMC-based PI controller, which stabilized position at most within 23 seconds. 

Accuracy of trajectory following was also significantly improved: RMSE of x and y locations reduced by more than 60% 

based on the hybrid method. Attitude angle overshooting was also reduced, representing smoother convergence and better 

robustness under trajectory constraints. These improvements supplement the visual outcomes and fully illustrate the benefit 

of the hybrid control technique. 

5. CONCLUSION 

This study explored the mathematical modeling, stabilization, and trajectory tracking of a quadrotor using advanced 

control strategies. The quadrotor's dynamics were analyzed using the six degrees of freedom (6-DoF) framework, which 

describes its translational and rotational motion in three-dimensional space. Rigid structure, axis symmetry, and thrust-drag 

proportionality, were the key assumptions employed to simplify the modeling process. Rotation matrices Euler angles were 

utilized to define the quadrotor's orientation and to transform coordinates between reference frames. 

There are two control strategies involved in this implementation, these are IMC-based PI controller and an approach 

combining IMC-based PI control with SMC-ESO. The IMC-based PI controller demonstrated effective stabilization of the 

Euler angles 𝜙, 𝜃, and 𝜓 within 3 seconds and the z-position within 2.4 seconds. However, positions x and y required 

additional control adjustments, including a proportional controller, to achieve stabilization, albeit with longer settling times 

of 12 seconds for angles and 23 seconds for positions. Overshoots were observed in the 𝜙, 𝜃, x, and y states before 

stabilization. 

For trajectory tracking, the hybrid SMC-ESO with IMC-based PI control outperformed the standalone IMC-based PI 

controller. The hybrid approach enabled the quadrotor to accurately lock onto and follow complex trajectories, such as 

helical and figure-eight paths, with greater precision and in shorter timeframes. Simulations showed that the hybrid 
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controller achieved accurate trajectory tracking within 25 seconds, while the IMC-based PI controller struggled to match 

the desired paths even after 60 seconds. SMC-ESO with IMC-based PI control proved to be a robust and efficient strategy 

for both stabilization and trajectory tracking, addressing the challenges posed by the quadrotor's underactuated and 

nonlinear. 

While current simulations are optimistic for the viability of the suggested hybrid controller, efforts should be put in 

place by the control engineer to guarantee its use in real-world conditions. The future work can focus on experimental 

validation using a physical quadrotor testbed, controller performance testing against external disturbance such as wind 

gusts and payload changes, and integrating sensor noise, communication latency, and actuator constraints into simulation 

and control design. 

These advances will be essential to enabling bridging from simulation to real-world deployment in high-precision, 

demanding, and autonomous UAV missions. 
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