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Abstract: The COVID-19 pandemic has highlighted the need to effectively manage hospital resources: ICU beds and ventilators. These 

resources are significant for sustaining life, especially in severe cases. Traditional deterministic models often fall short in addressing 

the uncertainties associated with patient inflows and resource availability.  This paper develops a novel two-stage stochastic 

programming model which aims to dynamically allocate resources to deal with the variability of inpatient admissions. To this end, the 

scenarios are developed using Monte Carlo simulation based on the probabilities estimated from the historical data. The model is 

created in Python language and solved using the Gurobi optimizer in 0.05s, a large-scale scenario optimization analysis problem with 

42 variables and 35 constraints. The KPIs show the highest utilization of ventilators at 66. 67% and the average reduction of 53.5 in the 

number of offers an ICU practical shortfall leading to better patient care and shorter wait times. This research presents a data-driven 

tool to enhance the decision-making process and the healthcare system's overall readiness to maintain its strategic reserves by 

implementing flexible staffing models to improve preparation for disasters such as the pandemic. Its stochastic optimization framework 

makes hospital resource allocation more efficient, offering a scalable, resilient solution for tackling future pandemic challenges. 

Keywords: Stochastic Programming, Hospital Resource Allocation, Pandemic Preparedness, Monte Carlo Simulation,  

Gurobi Optimizer, Resource Utilization 

1.  INTRODUCTION 

1.1. Background and Motivation 

Recent pandemics have pushed global healthcare systems to their limits, overwhelming them with surging patient 

numbers and critical shortages of ICU beds and other vital resources [1]. For example, the COVID-19 pandemic exposed 

how unprepared hospitals are for sudden patient surges, leaving facilities overwhelmed and patient care compromised.[2, 

3]. Traditional resource management relies on fixed allocation models that fail to handle pandemics' unpredictability and 

rapid changes [4]. These models assume steady patient arrivals and resources, which can lead to poor planning and even 

more significant shortages during demanding times. Yang, Zhang [5] reports a push for models that integrate real-time data 

and probabilistic forecasting to improve the responsiveness and resilience of healthcare systems. As noted in Essoussi, 

Masmoudi [6], [7], adaptive resource allocation uses advanced optimization to help hospitals quickly adjust resources to 

real-time patient surges and changing pandemic conditions. As reported in the works of Biswas, Belamkar [8], [9, 10], 

Stochastic programming models uncertainties and optimizes decisions, cutting resource waste and ensuring critical care is 

available when needed. These approaches help healthcare administrators boost efficiency, improve patient care, and build 

stronger, more resilient systems for future pandemics. This research presents a two-stage stochastic optimization model to 
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dynamically schedule hospital resources and handle patient inflow and resource availability uncertainties. It uses stochastic 

programming to improve resource allocation, reduce shortages, and enhance patient care during unpredictable pandemics. 

The approach uses stochastic optimization to overcome these limitations, and the key outcome is a model that minimizes 

shortfall costs while optimizing staff utilization. The model is constructed using the Python framework, with Gurobi 

employed as the solver to maximise resource utilization, mitigate shortages, and improve patient care. The rest of the paper 

is structured as follows. Section 2 discusses related works in the subject matter. Section 3 explains how we developed and 

applied a two-stage stochastic programming model with Python and Gurobi. Sections 4 and 5 delineate scenario analyses 

and discussion of the research, while section 6 summarizes the conclusion of the paper. 

The following sections explain how we created and applied a two-stage stochastic programming model with Python 

and Gurobi. The results section delineates scenario analyses. The discussion interprets the findings, examines their 

implications for healthcare policy and resource allocation, and underscores the model’s limitations. The study results are 

summed up in the conclusion, indicating how the model enhances patient outcomes and healthcare resilience and proposes 

subsequent analyses.  

2. RELATED WORKS 

Pandemic scenarios test healthcare systems globally with exponential patient inflow and uncertain resource demand 

[11]. Early studies on deterministic approaches for resource scheduling, as documented in Rachaniotis, Dasaklis [12], 

concentrated on the often inadequate handling of the dynamic problems of pandemics. They presume consistent patient 

arrivals and resource availability, which results in inflexible allocation rules that usually fail during high demand [13]. The 

handling of uncertainty is where deterministic and stochastic models differ most from each other. Deterministic models 

depend on predefined assumptions and offer unambiguous but usually rigid distribution techniques [14]. Although they are 

simple to operate, they find it difficult to adjust to real-time changes in patient count and resources, which usually results in 

bad outcomes during unanticipated surges. As reported in the works of Corlu, Akcay [15], stochastic models provide 

flexible answers for resource allocation by managing variability and uncertainty. Probabilistic scenarios make them more 

dependable and valuable since they help one better forecast and adjust to future developments. Recent studies employ 

stochastic optimisation more and more to address pandemic uncertainty properly [16, 17]. For example, Bhattacharjee and 

Ray [18] studied patient flows and possible resource supply chain problems using stochastic models with probabilistic 

characteristics. This makes for resilient and flexible distribution of resources. Unlike deterministic models, Yin and 

Büyüktahtakın (2021) devised a stochastic model that changes ICU bed allocation in real time depending on patient inflow, 

optimizing resource use and patient outcomes. Stronger decision-making is made possible by these stochastic models' 

better handling of unpredictability and uncertainty than deterministic ones [19]. Xu and Sen [20] report the application of 

stochastic programming to maximize ventilator allocation during COVID-19, balancing resource consumption and demand 

surge readiness. Eshkiti, Sabouhi [21] reported using Stochastic optimization incorporating real-time data to make 

healthcare resource scheduling more responsive and adaptable. These models use real-time data to update allocations, 

ensuring resources are used efficiently in changing conditions. Yinusa and Faezipour [22] researched using stochastic 

models to reduce resource shortages and improve patient outcomes with smarter, more flexible allocation strategies. In a 

related development, Blanco, Gázquez [23] conclude that stochastic models optimize multiple resources at once, managing 

ICU beds, ventilators, and medical staff simultaneously. This approach, unlike deterministic models that focus on single 

resources, provides a more complete solution to the complex challenges of pandemics. 

Despite advances in stochastic optimization for healthcare, significant gaps remain. For example, most models focus 

on optimizing a single resource, like ICU beds or ventilators, rather than managing multiple critical resources together—an 

essential need for effective pandemic response [24]. Mazlan, Daud [25] concludes that current models often struggle with 

scalability, limiting their use in larger hospitals or diverse healthcare settings. Another issue is the computational 

complexity and data needs of stochastic models. For example, Alizadeh, Allen [26] notes that Stochastic models struggle to 

adapt to big, varied healthcare systems since they suffer from computing requirements and data needs. As stated in the 

work of Mengesha [27], advancing the scalability of stochastic models with better computation and data processing would 

increase their application in various environments, including healthcare. Closing these gaps is essential to make healthcare 

systems more resilient and efficient for the successive crises, even if stochastic optimisation has improved healthcare 

resource scheduling during pandemics.  

 

3. METHODOLOGY 

3.1 Model Formulation 

A two-stage stochastic programming model is introduced to optimize ICU bed and ventilator distribution during the 

pandemic. The goal is to close the gap between available resources and patient demand in uncertain scenarios. The first 

stage of the optimization algorithm ensures proactive resource allocation decisions before the uncertain parameters. The 

second stage deals with the remedy after these uncertainties manifest. 

3.1.1 Notation and Definitions 

Sets: 

 Τ = {1, 2, … ,30}: Period (days). 

 𝑅 = {𝐼𝐶𝑈, 𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑜𝑟}: Types of resources. 

 𝑆 = {𝑆1, 𝑆2, 𝑆3}: Scenarios representing different demand levels.  
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Parameters: 

 𝐶𝑟 : Total capacity for resource 𝑟. 

 𝐷𝑟,𝑡,𝑠: Types of resources demand for resource 𝑟 at time 𝑡 under scenario 𝑠. 

 𝑝𝑠 : Probability of scenario 𝑠.  

 𝛽𝑟 : Cost coefficient for the shortfall of resource 𝑟. 

 𝑘𝑟 : Staffing requirement per unit of resource 𝑟. 

 𝑀𝑡 : Total available medical personnel at the time 𝑡. 

 𝑎𝑟,𝑠,𝑡 : Availability factor for resource 𝑟 under scenario 𝑠 at time 𝑡. 

 𝑦𝑟,𝑡,𝑠: Additional units of resource 𝑟 at time 𝑡 under scenario 𝑠 

Decision Variables: 

 𝑥𝑟,𝑡 ≥ 0: First-stage allocation of resource 𝑟 at time 𝑡. 

 𝑦𝑟,𝑡 ≥ 0: Additional units of resource 𝑟 at time 𝑡 

 𝑐 ≥ 0 : Second-stage additional allocation of resource 𝑟 at time 𝑡 under scenario 𝑠. 

 𝑧𝑟,𝑡,𝑠 ≥ 0  : Shortfall of resource 𝑟 at time 𝑡 under scenario 𝑠.  

Performance Metrics: 

 Expected Shortfall (in units): Quantifies the average unmet demands across simulation runs. 

 Expected Shortfall Cost ($): Calculates the economic impact of the shortfall using penalty coefficients for 

each resource type. 

 Resource Allocation (%): Indicates the proportion of available resources allocated per period. 

 Staffing Utilization (%): Measures how effectively the available medical personnel are utilized based on 

staffing requirements per resource. 

 

3.1.2 Objective functions  

The model aims to minimize the projected shortfall cost across all scenarios and resources. The objective function 

combines the shortfall costs, weighted by their corresponding scenario probabilities. It minimizes the anticipated costs 

related to inadequacies in resource allocation across all scenarios and resources as described mathematically in Equation 

(1). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = ∑ 𝑝𝑠 ∑ ∑ 𝛽𝑟 ⋅ 𝑧𝑟,𝑡,𝑠

𝑡𝜖𝑇𝑟𝜖𝑅𝑠𝜖𝑆

 
(1) 

3.1.3 Constraints 

The first-stage capacity constraints as described in Equation (2), ensure the initial resource allocations do not exceed 

the available capacities. 

∑ 𝑥𝑟,𝑡 ≤ 𝐶𝑟

𝑡𝜖𝑇

, ∀𝑟 ∈ 𝑅 
(2) 

The second-stage demand satisfaction constraints as described in equation (3). It ensures the allocations satisfy patient 

demand in every scenario, permitting managed gaps and considering the availability factor. 

𝑥𝑟,𝑡 +  𝑥𝑟,𝑡 ≥ 𝐷𝑟,𝑡,𝑠 ⋅ 𝑎𝑟,𝑠,𝑡 − 𝑧𝑟,𝑡,𝑠, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆  (3) 

The second-stage capacity constraint is described in Equation (4). Its guarantees that the supplementary allocation in 

the second stage does not beyond the residual capacity following the first-stage allocation. 

∑ 𝑦𝑟,𝑡,𝑠 ≤ 𝐶𝑟 −

𝑡𝜖𝑇

 ∑ 𝑥𝑟,𝑡 ,

𝑡𝜖𝑇

 ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆 
(4) 

Staffing constraints is described in Equation (5). Its guarantees that the medical personnel needed for both first-stage 

and second-stage allocations always remain within the capacity of available medical professionals and under all 

circumstances. 

∑(𝑘𝑟 ⋅ 𝑥𝑟,𝑡 + 𝑘𝑟 ⋅ 𝑦𝑟,𝑡,𝑠) ≤ 𝑀𝑡 ,

𝑟𝜖𝑅

   ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 
(5) 

The non-negativity constraints are described in Equations (6). It guarantees that all allocations and deficits are non-

negative, conforming to feasible operating circumstances. All decision variables must be non-negative, representing actual 

distributions and deficiencies. 

𝑥𝑟,𝑡 ≥ 0,   𝑦𝑟,𝑡,𝑠 ≥ 0,   𝑧𝑟,𝑡,𝑠 ≥ 0, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆  (6) 

 

Figure 1 illustrates the two-stage stochastic programming model for allocating ICU beds and ventilators. Table 1 

summarizes the two-stage stochastic programming algorithm. 

3.2. Mathematical Formulation 

The elements in the Equations (1-6) can be properly combined as a combined two-stage stochastic programming 

model combined as follows, in (7-8): 
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Table 1: Two-stage stochastic programming algorithm 

 
 

 
Figure 1: Detailed flowchart of the two-stage stochastic programming model for hospital resource allocation 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑠 (∑ ∑ 𝛽𝑧𝑟𝑠𝑡

𝑡∈𝑇𝑟∈𝑅

)

𝑠𝜖𝑆

 

 

(7) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑥𝑟,𝑡 ≤ 𝐶𝑟 , ∀𝑟 ∈ 𝑅

𝑡𝜖𝑇

 

𝑥𝑟𝑡  + 𝑦𝑟𝑠𝑡 ≥ 𝐷𝑟𝑡 ⋅ 𝑎𝑟𝑠𝑡 − 𝑧𝑟𝑠𝑡  , ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

(8) 

Define Sets
Τ, 𝑅, 𝑆

Define Parameters
𝐶𝑟, 𝐷𝑟,𝑡,𝑠, 𝑝𝑠, 𝛽𝑟, 𝑘𝑟, 𝑀𝑡, 𝑎𝑟,𝑠,𝑡

Start

Define Demand
𝐷𝑟,𝑡,𝑠

Initialize Gurobi
Model

Define Decision Variables

𝑥𝑟,𝑡, 𝑦𝑟,𝑡, 𝑧𝑟,𝑡,𝑠

Define Objective 
Function

Constraints 
Satisfied?

Add Constraints:
Capacity, Demand, 

Staffing

Optimize the Model

Interpret Results

End
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∑ 𝑦𝑟𝑠𝑡 ≤ 𝐶𝑟 − ∑ 𝑥𝑟𝑡 ,

𝑡𝜖𝑇

       ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆

𝑡𝜖𝑇

 

∑ 𝑘𝑟𝑥𝑟𝑡 + ∑ 𝑘𝑟𝑦𝑟𝑠𝑡 ≤ 𝑀𝑡

𝑟𝜖𝑅

 ,     ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆

𝑟𝜖𝑅

 

𝑥𝑟𝑡 ≥ 0, 𝑦𝑟𝑠𝑡 ≥ 0, 𝑧𝑟𝑠𝑡 ≥ 0, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

 

3.3. Stochastic Optimization Approach 

Implementing a two-stage stochastic programming framework is essential for optimizing hospital resource allocation 

described in Table 1 and Figure 1. This is within the context of the uncertainties presented by a pandemic. This 

methodological choice divides the decision-making process into two distinct phases: the first and second. Primarily, 

decisions are made proactively before the occurrence of uncertain events, including variations in patient inflow and differing 

demand levels across various scenarios (𝑆1, 𝑆2, 𝑆3). The allocation of resources: ICU beds and ventilators, is dictated by 

baseline demand projections and capacity constraints, represented by the parameters 𝐶𝑟 and 𝐷𝑟,𝑡,𝑠. This proactive allocation 

keeps the hospital prepared and lowers the risk of shortages. In the second stage, the model adjusts resource allocations 

( 𝑦𝑟,𝑡,𝑠 ) and handles shortfalls ( 𝑧𝑟,𝑡,𝑠 ) based on specific scenarios as uncertainties unfold. This reactive component 

dynamically adjusts to real-time demand changes, cutting anticipated shortfall costs (𝛽𝑟) across scenarios.  

The two-stage stochastic framework combines proactive and reactive strategies to balance resource utilization and 

flexibility that guarantees readiness and responsiveness to pandemic uncertainty. Discrete probabilities allow one to predict 

patient inflow for scenarios𝑆1 , 𝑆2 , and 𝑆3 . By including resource availability uncertainty with availability factors 𝑎𝑟,𝑠,𝑡 , 

supply chain disruptions and maintenance concerns are addressed. Making the two-stage stochastic model strong for the 

distribution of hospital resources depends on creating scenarios. This work generates several scenarios of patient influx and 

resource availability using Monte Carlo techniques. The Monte Carlo simulation uses historical COVID-19 hospitalization 

data to generate probable demand patterns for ICU beds and ventilators, defined by 𝐷𝑟,𝑡,𝑠. The model includes a wide range 

of scenarios—fluctuations in patient inflow and resource supply disruptions—to handle uncertainty and adapt to both 

typical and unexpected pandemic situations. It is worth noting that too many scenarios can make the optimization problem 

unmanageable, while too few might miss key uncertainties. This framework limits the number of scenarios to cover key 

uncertainties while keeping the model solvable. This ensures the stochastic model stays robust, efficient, and ready to 

maximize resource allocation in several epidemic circumstances. Using its tools for efficient computing and analysis, 

Python is applied in two-stage stochastic programming. Gurobi handled the optimisation and the demanding tasks required 

for real-time pandemic responses. Pandas manage and arrange the data; NumPy is used to conduct the numerical operations. 

SciPy, matplotlib, and Seaborn supported scenario development and visualization. To boost model resilience, we created 

many scenarios based on probability distributions using Monte Carlo methods using NumPy. Data gaps lead the model to 

assume constant resource availability and patient arrival rates based on historical averages, simplifying the model to 

concentrate on significant uncertainty and guaranteeing efficiency. 

 

4. RESULTS 

4.1. Model Implementation 

The two-stage stochastic programming model was implemented in Python, utilizing Gurobi for optimisation. The 

procedure involves establishing sets, parameters, and decision variables derived from hospital data concerning ICU beds 

and ventilators over three distinct periods and scenarios. A significant challenge involved maintaining computational 

efficiency while navigating various scenarios and constraints. We simplified the model and used Gurobi's solver, which, 

after 31 runs, produced an ideal answer in just 0.05 seconds. The solver stops when the optimality gap reaches zero. This 

tells us the feasible solution is the best one, and it is equal to the theoretical lower bound. Thus, it is globally optimal. The 

final objective value was leveled off at 109,000.00, which means no further improvement. Primal and dual feasibility 

criteria were met at iteration 31. At this iteration, the primal and dual infeasibilities were pinpointed to zero, which is 

correct. Presolve processes have also significantly reduced the size of the optimization problem given to the solver. The 

problem size was reduced from the initial 35 rows, 42 columns and 132 nonzero elements. This simplification has 

undoubtedly enhanced the computational speed. Therefore, the computational efficiency has been improved, and the solver 

could find the optimal solution in 0.13 seconds. This result shows how efficient the solver is after the presolve 

optimizations. The computing device used for this simulation are reported as follows:  

 CPU model: Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz, instruction set [SSE2|AVX|AVX2] 

 Thread count: 2 physical cores, 4 logical processors, using up to 4 threads 

 Gurobi Optimizer version 11.0.3 build v11.0.3rc0 (win64 - Windows 11.0 (22000.2)) 

The performance study verified the effective use of resources with few shortages. Visualization techniques helped 

make the results easily understandable, increasing the model's practical applicability for pandemic management of hospital 

resources. 
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4.2. Scenario Analysis 

Under three scenarios 𝑆1, 𝑆2, and 𝑆3 we assessed the two-stage stochastic programming model's capacity to maximise 

ICU bed and ventilator allocation under diverse patient inflow and uncertainty. While 𝑆3 , (20% likelihood) considers 

significant input, 𝑆1, (30% probability) assumes modest inflow; 𝑆2, (50% probability) indicates the most likely demand 

[28]. These scenarios, produced by Monte Carlo techniques, guarantee a varied and reasonable range of future conditions. 

Figures 2 and 3 show the initial allocations from the first stage, set before the scenarios unfolded. The model initially 

allocated zero ICU beds, assuming adequate baseline capacity or conserving resources. However, ventilator allocations 

were proactive, assigning 20 units on Day 2 and 2.5 on Day 3. This strategy balances short-term needs with flexibility for 

long-term demands. The model dynamically adjusts the allocation of ICU beds and ventilators depending on the baseline 

capacity, staffing constraints and the stochastic demand forecasts made. The model emphasizes flexibility for effective 

resource management while at the same time being able to respond to the changing pandemic conditions. The parameters 

used for the simulation are described in Table 2.  

Table 2: Parameters used in the simulation 

Scenario ICU Shortfall Ventilator Shortfall 

𝑺𝟏 40 30.0 

𝑺𝟐 55 38.0 

𝑺𝟑 70 45.0 

 

 
Figure 2: Initial allocation of ICU beds over time 

 

 
Figure 3: Initial allocation of ventilators over time 
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After the scenarios unfolded, the model adjusted resource allocations to address shortfalls. Figures 4, 5, and 6 show the 

shortfall distributions for each scenario. In S_1, there were shortages of 40 ICU units and 30.0 ventilators. The S_2 faced 

deficits of 55 ICU units and 38.0 ventilators, while S_3 showed 70 ICU unit shortages and 45.0 ventilator deficits. Table 

3 highlights how the model predicts and responds to varying demand levels, though some unmet needs may lead to 

patient wait times. 

 

 
Figure 4: Shortfall per resource in scenario 𝑆1 

 

 
Figure 5: Shortfall per resource in scenario 𝑆2 

 

Staffing utilization, as compensated for in Equation (5), an essential metric indicating operational efficiency, is 

illustrated in Figures 7, 8, and 9 for scenarios 𝑆1, 𝑆2, and 𝑆3, respectively. In Scenario 𝑆2, staffing utilization reached 

100% on Day 1, indicating optimal deployment, which then reduced gradually and reflects how resources were fully 

utilized at the beginning. Other scenarios demonstrated different utilization rates, with 94.44% in 𝑆1,  and 94.33% in 𝑆3 , 

Day 2, reflecting effective but suboptimal use of available personnel. The variations highlight the model's capacity to 

adjust staffing resources according to changing demands. Figures 7, 8, and 9 clearly show how staffing resources are 

allocated and adjusted according to demand. It offers a better understanding of staffing utilization beyond raw numbers. 

The utilization was derived based on the ratio of allocated resources to the available staffing capacity.  
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Figure 6: Shortfall per resource in scenario 𝑆3 

 

Table 3: Shortfall summary across scenarios 

Scenario ICU Shortfall Ventilator Shortfall 

𝑺𝟏 40 30.0 

𝑺𝟐 55 38.0 

𝑺𝟑 70 45.0 

 

 
Figure 7: Staffing utilization over time in scenario 𝑆1 

 

Figure 10 delineates the financial consequences of shortfalls by specifying the anticipated shortfall cost associated 

with each resource. The model resulted in an expected shortfall cost of $53,500, with ICU shortfalls playing a significant 

role due to their higher shortfall cost coefficient of $1,000 per unit. In contrast, ventilators had a coefficient of $1,500 per 

unit and a shortfall of slightly higher, around $55,500. This visualization highlights the economic consequences of unmet 

demand and the necessity of optimizing resource allocations to reduce associated costs. 
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Figure 8: Staffing utilization over time in scenario 𝑆2 

 

 
Figure 9: Staffing utilization over time in scenario 𝑆3 

 

 
Figure 10: Expected shortfall cost by resource 
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5.  DISCUSSION 

5.1. Interpretation of Results 

Applying the two-stage stochastic programming model has significantly improved hospital resource allocation 

efficiency, especially regarding ICU beds and ventilators during pandemic scenarios. Most of the time, traditional 

allocation methods are based on fixed, deterministic strategies that do not consider that patient flow and resource 

availability are constantly changing. Our stochastic model adjusts allocations dynamically based on real-time scenario 

realizations, as demonstrated by the initial allocation of ICU beds over time (Figure 2) and the initial allocation of 

ventilators over time (Figure 3). The figures illustrate the strategic allocation of the model, which systematically distributes 

ventilators to meet projected mid-term demands and maintains ICU beds for potential surges. The Key Performance 

Indicators (KPIs) presented in Table 4 highlight the model's effectiveness. The resource utilization rates, which peak at 

66.67% on Day 2 and demonstrate minimal utilization on other days, demonstrate effective ventilator deployment without 

underuse or overextension. The Shortfall Across Scenarios, illustrated in Figures 4, 5, and 6 for Scenarios 𝑆1, 𝑆2, and 𝑆3, 

respectively, show the model’s effectiveness in reducing unmet demand, resulting in a Total Expected Shortfall Cost of 

$109,000. The decrease in shortfalls is directly associated with reduced patient wait times and enhanced survival rates, as 

timely access to essential resources is crucial during health emergencies. 

Table 4: Summary of key performance indicators 

Resource Time Allocation (%) Shortfall (units) Staffing Utilization (%) 

ICU 1 0.00 53.5 94.44 

ICU 2 0.00 53.5 72.22 

ICU 3 0.00 53.5 16.67 

Ventilator 1 0.00 37.0 94.44 

Ventilator 2 66.67 37.0 72.22 

Ventilator 3 8.33 37.0 16.67 

 

Staffing utilization, as depicted in Figures 7, 8, and 9 for Scenarios 𝑆1, 𝑆2, and 𝑆3 , respectively, demonstrates the 

model's efficacy in synchronizing staffing levels with resource allocations. The 𝑆2 achieved complete staffing utilization on 

Day 1, ensuring optimal personnel deployment (Figures 7, 8 and 9). The metrics indicate that the model optimizes physical 

resources and enhances human resource management, improving operational efficiency and patient care quality. Hospital 

managers can improve decision-making during pandemics using thorough scenario studies and KPI assessments. Figures 

2–10 and Table 4 provide information that helps managers project resource needs, run strategic backup plans, and 

maximize inventory and personnel in real time. This strategy improves the resilience of a healthcare system so it may 

maintain high-quality treatment standards under different conditions. 

5.2. Practical Implications 

The results of the model point to three main policy recommendations: build advanced optimisation systems to improve 

pandemic preparedness, generate stored reserves of significant resources, and establish changing staffing patterns. These 

approaches can significantly reduce the consequences of health crises since they are backed by a model that can spot and 

control hazards. Still, the model has certain restrictions. This model works best with thorough and accurate hospital and 

public health data; missing or partial data can compromise its effectiveness since it is data-dependent. Using historical 

averages for patient arrivals and resource availability could not fully reflect the real-life fluctuations, for instance, 

unexpected supply chain changes or a rise in patient severity. These simplifications might not be sufficient to depict real-

life circumstances, particularly in healthcare settings where resource variances might not be constant. These simplifications 

might not be adequate to depict real-life circumstances, particularly in healthcare settings where resource variations could 

not be consistent. The future iterations of the model should close these gaps by adding features like the patient severity 

index, the capacity to maximize several objectives, including the cost and quality of care and the interaction with other 

sections of the healthcare system. Moreover, improving the model's adaptability would involve increasing the availability 

of information and considering more resources. Using more scenarios and extending the model to incorporate big hospitals 

or other healthcare facilities would help the model depict actual healthcare networks more accurately by increasing the 

time step. Furthermore, deploying machine learning approaches to improve scenario development and forecast accuracy in 

dynamic and complicated situations might be very beneficial for optimizing hospital resources. 

6. CONCLUSION 

 This research work develops a two-stage stochastic programming model that manages the dynamic availability of 

hospital resources, such as ICU beds and ventilators, in handling pandemics. Scenario optimisation results show that the 

model can deal with the uncertainties in patient arrivals and resource availability by incorporating uncertainty. It comes up 

with anticipated shortfall costs of $109,000 and effectively manages the resources in all the scenarios, making the model 

very useful and reliable. Solving the model using Gurobi as the solver, dealt with the complexity of the model and came up 

with an optimal solution in 0.05 seconds. Python libraries like NumPy and Pandas streamlined data handling, while 

Matplotlib enabled clear visualization of resource allocations and staffing across scenarios. The model improved resource 

utilization, achieving a 66.67% ventilator use rate while maintaining low ICU usage—balancing conservation and 
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preparedness. Reducing shortfalls enhances patient outcomes with shorter wait times and quicker access to critical care, 

potentially increasing survival rates. This tool strengthens healthcare resilience, empowering administrators with data-

driven insights for strategic decision-making. Its ability to anticipate and adapt to changing pandemic scenarios helps 

hospitals maintain high-quality care in challenging situations.  
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