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Abstract: The increasing occurrence of Distributed Denial of Service (DDoS) attacks has caused significant disruptions in global 

network services, overwhelming targets by flooding them with requests from various sources. This ease of execution and gaining entry to 

distributed systems for rent has led to increasing financial losses. This paper addresses the growing challenge of IoT devices-targeted 

Distributed Denial of Service (DDoS) attacks within 4G networks. In this study, a PCA-MLP (Principal Component Analysis-Multi-

Layer Perceptron) intrusion detection model combined with a packet-filtering firewall for enhanced prevention is presented. The 

firewall, utilizing IPtables, selectively permits traffic from trusted sources, successfully blocking nearly 70% of DDoS threats. The PCA-

MLP model proposed in this study demonstrated high performance, accurately identifying different types of DDoS attacks with an 

overall accuracy of 95.35%. 
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1.    INTRODUCTION 

The swift expansion of the Internet of Things (IoT) has brought numerous advantages and conveniences. However, the 

extensive network of interconnected devices also creates substantial security risks. IoT equipment, ranging from personal 

electronics to industrial systems, are particularly vulnerable to cyberattacks [1]. Among such threats, Distributed Denial of 

Service (DDoS) attacks present a major challenge, especially for IoT connectivity on widely used 4G networks [2]. Such 

attacks have become a serious concern for businesses that rely on public networks for their technological integration 

(Manita and Suleiman, 2024). To address these challenges, an effective security system is necessary to identify and 

counteract DDoS attacks targeting IoT devices utilizing 4G, ensuring both reliability and scalability. These attacks can 

severely impair system and service performance [3]. 

The widespread adoption of IoT devices has made them increasingly susceptible to DDoS and DoS attacks, largely due 

to insufficient security protocols. The vast number of connected devices, combined with their limited memory and 

processing capabilities, heightens the vulnerability of 4G networks. Furthermore, the unique features of IoT devices, 

including low computational capacity and diverse communication protocols, add complexity to security management. To 

mitigate these risks, a robust security framework is required, incorporating firewall defenses, packet filtering, and multi-

layered protection at both the device and network levels [4].  

Existing countermeasures such as traditional firewalls and machine learning (ML)-based intrusion detection systems 

have made strides in mitigating these threats. However, many of these approaches suffer from limitations including low 

detection accuracy, lack of adaptability to new attack patterns, and insufficient real-time processing capabilities. To 

address these challenges, this paper proposes a hybrid model that combines Principal Component Analysis (PCA) for 

dimensionality reduction with a Multi-Layer Perceptron (MLP) for accurate classification. The model is integrated with a 

real-time packet-filtering firewall (IPtables) to further strengthen its defence capabilities. This approach achieved an 

overall detection accuracy of 95.35%, demonstrating its effectiveness in identifying and mitigating various types of DDoS 

attacks. This study utilizes network-level strategies such as traffic filtering, rate limiting, and IP verification to combat 

malicious activity. The remainder of this paper is organized as follows: Section 2 presents related works and a 

comprehensive literature review, highlighting current research gaps. Section 3 details our methodology, including the 

mathematical model, dataset description, and experimental setup. Section 4 presents the results and discussion, including 

comparative analysis with existing approaches. Section 5 acknowledges the limitations of the current study, while Section 
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6 discusses the integration and adaptability of the proposed solution. Finally, Section 7 provides conclusions and directions 

for future research. 

2. RELATED WORKS  

This study introduces a method that filters incoming packets employing a firewall to protect in opposition to DDoS 

attacks. Automated firewall configurations were carried out with the Linux command-line tool iptables to block suspicious 

traffic effectively. The combination of Wireshark, a network traffic analysis tool, and an iptables-based firewall system 

demonstrated strong capabilities for monitoring and mitigating various types of DDoS attacks. By dynamically addressing 

potential threats identified by Wireshark, this approach adds an additional layer of security to the server. The types of 

network attacks analysed in this study are detailed in the subsequent sections. 

i. Denial of Service (DOS): DoS attacks represent a major risk to subscriber networks, targeting their operations 

with the intent to cause temporary or permanent disruptions. These attacks are typically carried out by individuals 

or organizations aiming to disable access to specific websites or services. High-priority targets often include 

essential online hosting platforms, including those handling credit card-based transaction processing and banking 

services [5]. 

ii. Distributed Denial of Service: A Distributed Denial of Service (DDoS) attack seeks to render a service 

inaccessible by inundating the server with a large volume of harmful traffic [6].  

iii. Distributed Reflection Denial of Service-Network Time Protocol (DrDoS_NTP): DrDoS_NTP is a type of attack 

that takes advantage of weaknesses in the NTP system. In this type of attack, perpetrators send spoofed requests to 

NTP servers, prompting them to overwhelm the target server with amplified traffic. This amplification happens 

because the NTP servers respond with data significantly larger than the initial requests [7]. 

iv. Trivial File Transfer Protocol (TFTP): is a streamlined protocol created for transferring files, primarily within 

Local Area Network environments [8]. It uses UDP and does not include authentication features, making it 

vulnerable to exploitation in cyberattacks like DrDoS attacks. In these scenarios, attackers exploit TFTP servers by 

sending minimal requests that trigger disproportionately large responses, amplifying the traffic. 

v. Benign traffic: Benign traffic consists of legitimate and harmless data packets that do not pose any threat to 

network integrity. It serves as a baseline to define normal network behaviour, enabling intrusion detection systems 

to identify anomalies effectively [9]. 

vi. Synchronize (SYN): SYN is the initial step in the TCP three-way protocol initialization process, in which a client 

sends a synchronize (SYN) packet to server to start a connection. In network attacks, a SYN flood occurs when an 

attacker bombards a server with excessive SYN packets, depleting its resources and blocking legitimate 

connections [10]. 

2.1 Literature Review 

A study by Nanda et al. [11] proposed the use of machine learning algorithms trained on historical network attack data 

to predict and block possible harmful connections as well as their targets. The researchers employed four commonly 

recognized machine learning techniques— Bayesian Network, Naive Bayes, C4.5, and Decision Table algorithms to 

forecast likely attack targets. Their experiments unveiled that Bayesian Networks attained an average predictive accuracy 

of 91.68%. Another study by Kodati et al. [12] focused on detecting Detecting and mitigating distributed denial of service 

(DDoS) attacks in software-defined networks (SDNs) through machine learning techniques. The models evaluated 

included K-Nearest Neighbour (85.4% accuracy), Naive Bayes (84.2%), Support Vector Machines (86.4%), and Decision 

Tree (88.1%). Similarly, Tzagkarakis et al. [13] developed a framework for identifying compromised IoT devices within a 

botnet and detecting malicious activities at the IoT-Edge layer. The framework utilized Sparsity Representation and 

Reconstruction Error Threshold methods for traffic classification, leveraging only threshold error analysis since the 

machine learning models were trained on benign traffic data from NB-IoT.  

Liu et al. [14] introduced a two-tier DDoS detection strategy tailored for SDN environments. The first tier employed an 

entropy-based technique to identify potentially suspicious components and ports, while the second tier applied a 

Convolutional Neural Network (CNN) model for more precise detection, distinguishing between legitimate and malicious 

communications. Another framework, Salim et al. [15] utilized the Long Short-Term Memory (LSTM) algorithm and deep 

learning techniques to identify firmware vulnerabilities in IoT devices. This system analysed and disabled compromised 

devices, continuously monitored them, and re-enabled them once they were secure. Hussain et al. [16] proposed a method 

for identifying various DDoS attack types, such as SMS flooding, signalling, and silent call attacks, in 4G LTE-A 

networks. This approach combined a Convolutional Neural Network for pre-processing traffic in the network core with a 

ResNet-50 model to classify traffic and detect attack types. The deep learning model was trained on a dataset from 

Telecom India.  Sahi et al. [17] outlined a classification framework for identifying and mitigate DDoS TCP flood threats 

within public cloud environments. The system categorized packets and made mitigation decisions based on the 

classifications to secure stored records. Additionally, Ozer et al. [18] suggested a method using deep packet analysis for 

rapid DDoS detection. This involved capturing network traffic packets, filtering them at a pre-set threshold, logging them 

in a database, and comparing average values to known DDoS patterns. Osanaiye et al. [19] Presented a DDoS detection 

system employing a multi-filter feature selection approach based on ensemble methods. By combining outputs from four 

different filter methods, the system optimized feature selection. Using the NSL-KDD data set and a classifier based on a 
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decision tree, the system demonstrated efficiency in feature selection but was limited by processing delays.  

Almadhor et al. [20] focused on developing an anomaly detection system utilizing machine learning to mitigate DDoS 

attacks in IoT networks. By employing a diverse dataset encompassing various IoT device types and network 

configurations, the research evaluated multiple machine learning algorithms for DDoS detection. The system demonstrated 

high accuracy in identifying abnormal traffic patterns associated with DDoS attacks. While the study achieved 

commendable accuracy, it did not integrate real-time response mechanisms, such as firewall interventions, to actively 

mitigate detected threats. Additionally, the adaptability of the model to evolving attack vectors remains unaddressed. Also, 

Alahmadi et al. [21] employed an improved feature selection technique to identify the most relevant features for DDoS 

detection in Software-Defined IoT (SDIoT) environments. By reducing the feature space, the study aimed to improve 

detection rates and reduce training times of machine learning classifiers. Although effective in feature selection, the study 

focused primarily on SDIoT environments, which may not directly translate to traditional IoT over 4G networks.    

Furthermore, the integration of the detection model with real-time mitigation strategies, such as firewall 

implementations, was not explored. In Saravanan et al. [22], the study introduced a federated learning approach combined 

with Explainable Artificial Intelligence (XAI) to detect DDoS attacks in heterogeneous IoT environments. The model 

aimed to enhance detection accuracy while preserving data privacy across distributed IoT devices. While the federated 

learning approach addresses data privacy concerns, it may introduce complexities in model synchronization and increased 

communication overhead. Additionally, the study does not incorporate real-time mitigation measures post-detection. The 

PCA-MLP hybrid model proposed in this study not only enhances detection accuracy but also incorporates real-time 

packet-filtering firewalls, enabling immediate response to identified threats and improving adaptability to new attack 

patterns. This research extends the application of effective feature selection to IoT over 4G networks and integrates the 

detection model with real-time firewall responses, ensuring both efficient detection and immediate mitigation of DDoS 

attacks. Finally, the PCA-MLP hybrid model focuses on centralized processing to simplify implementation and integrates 

real-time packet-filtering mechanisms, providing both accurate detection and immediate response to DDoS threats in IoT 

over 4G networks. 

3. METHODOLOGY 

The experimental setup was configured using Linux Ubuntu Server version 10.10 with Wireshark installed, a tool for 

analysing network protocols. The model architectural framework of the model is illustrated in Figure 1.   

 

 

Figure 1: The architectural framework of the model. 

 

 

3.1 System Design 

    The experimental configuration utilized a Linux Ubuntu Server version 10.10 alongside Wireshark, a tool for network 

protocol analysis. A system was used to serve as an interface between the Wireshark application, used for network traffic 

monitoring and analysis, and an iptables-based firewall system. This system processes the output from Wireshark to 

identify potentially malicious IP addresses. When a malicious IP is detected, the system issues a command to iptables to 

add a rule blocking the identified IP. Similarly, if the analysis identifies a compromised port, the system adds a rule to 

close that port. Conversely, if the analysis determines an IP address or port is no longer a threat, the system unblocks them 

accordingly. 

    To optimize the dataset, dimensionality reduction was performed using a filtering method based on information gain 

with ranker. This approach evaluates the entropy-based information gain for each attribute, ranking them in descending 

order of relevance. Each attribute is assigned an evaluation metric beginning with 1 (most significant) and ending at 0 
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(least significant), with the highest-ranked attributes forming the input subset for the next stage of dimensionality 

reduction. The flow of this model is illustrated in Figure 2. 

 

3.2 Mathematical Model 

    The dimension of the dataset used was reduced by employing the information gain method with a ranker serving as a 

filtering approach. This technique ranks attribute subsets by calculating their information gain entropy in descending order. 

All attributes are assigned scores ranging from 1 (indicating the most relevant) to 0 (indicating the least relevant). Features 

with the highest scores are selected as part of the input features for the subsequent dimension reduction phase.   

If m represents the number of classes, di denotes the number of instances belonging to class i, and D is the total number of 

instances in the training set, Equation 1 calculates the estimated information required to classify a given 

instance.𝐼(𝑑1, 𝑑2, … 𝑑𝑚) = − ∑
𝑑𝑖

𝐷

𝑚
𝑖=1 . 𝑙𝑜𝑔2 (

𝑑𝑖

𝐷
)                                              (1) 

An attribute T with values {t1; t2; … ; tv} was used in dividing the training data into v partitions:{S1,S2,…,Sv}.where Sj is  

 

Where m: Total number of classes, dᵢ: Number of instances belonging to class i, D: Total number of instances in the dataset 

dᵢ / D: Probability of an instance belonging to class i, and I(·): Information entropy, (i.e., expected amount of information 

needed to classify a new instance). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Model flow process 

 

Given that I(x₁, x₂, ... xₘ) represents the information required to classify a given instance with attribute values x₁ through xₘ  

κ is the number of classes in the classification problem, πᵢ represents the number of instances belonging to class i in the 

training data, Τ is the total number of instances in the training set, πᵢ / Τ represents the probability of an instance belonging 

to class i, and log₂(πᵢ / Τ) is the logarithm (base 2) of this probability T. 

Furthermore, if Sj includes dij instances of class I, the entropy of the feature T is calculated as:  

𝐸(𝑇) = ∑
𝑑1𝑗+⋯+𝑑𝑚𝑗

𝐷

𝑣
𝑗=1 × 𝐼(𝑑1𝑗 … 𝑑𝑚𝑗)                                               (2) 

    Where T: Attribute under consideration, v: Number of distinct values of attribute T, Sⱼ: Subset of data where T takes the 

jᵗʰ value, dᵢⱼ: Number of instances of class i in subset Sⱼ, D: Total number of instances, and I(d₁ⱼ, …, dₘⱼ): Entropy of the j ᵗʰ 

subset. Equation 3 presents the computation needed to derive the information gain (IG) for an attribute T: 

𝐼(𝐺𝑎𝑖𝑛(𝑇) = 𝑑1, … , 𝑑𝑚) − 𝐸(𝑇)                                                                (3) 

    Where Gain(T): Information gain of attribute T, I(d₁, …, dₘ): Entropy before splitting, and E(T): Entropy after splitting 

on attribute T. 

    PCA was used in lowering the dimension of the data to enhance the detection of DDoS attacks. The process can be 

described mathematically as follows.  

If {x(t)} for t = 1…n represents a randomized dataset consisting of matching instances and attributes with Mean 

normalized to zero. The covariance matrix of x(t) is expressed as presented in Equation 4: 

𝑅 =
1

𝑛−1
∑ [𝑥(𝑡) × (𝑡)𝑇]𝑛

𝑖=1                                                                        (4) 
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    Where R depicts the Covariance matrix, x(t) is the Data sample (feature vector) at time t, assumed zero-mean, n is 

number of samples, x(t)ᵗ is the transpose of x(t), and × is the Outer product (vector multiplication, not element-wise). 

In Principal Component Analysis (PCA), the linear mapping from x(t) to y(t) can be calculated as: 

𝑦(𝑡) = 𝑀𝑇 × (𝑡)                                                                                             (5) 

    Where y(t) is Transformed feature vector (principal components), x(t) represents the Original input feature vector, M is 

the matrix of eigenvectors (principal directions), and Mᵗ is the Transpose of M used for projection. 

    In Principal Component Analysis (PCA), M represents an 𝑛 × 𝑛 orthogonal matrix where the 𝑖𝑡ℎ column corresponds 

to the 𝑖𝑡ℎ   eigenvector of the sample covariance matrix R. PCA solves the eigenvalue problem to determine these 

eigenvectors and eigenvalues. The eigenvalue problem is expressed as: 

𝜆𝑖𝑞𝑖 = 𝑅𝑞𝑖                                                                                                                                                 (6) 

    Where λᵢ represents the iᵗʰ eigenvalue of covariance matrix R, qᵢ is the iᵗʰ eigenvector of R, and R is the Covariance 

matrix. Given that 𝜆𝑖  represents an eigenvalue of the covariance matrix R, whereas the associated eigenvector is 

represented by qi. According to Equation 5, the principal component is obtained by: 

𝑦𝑖(𝑡) = 𝑞𝑖
𝑇𝑥(𝑡), 𝑖 = 1, … , 𝑛                                                                          (7) 

    Where yᵢ(t) signifies the iᵗʰ principal component at time t, qᵢ: iᵗʰ eigenvector, and x(t): Original input feature vector. The 

principal directions (the top k eigenvectors) are obtained by sorting the eigenvalues 𝜆𝑖  in descending order. These 

eigenvectors are used for feature extraction, capturing the most significant variance in the data. Equation 8 defines the 

calculation for projecting a new sample x(t) onto the primary subspace as: 

𝜘(𝑡) = ∑ 𝑏𝑖
𝑇𝑥(𝑡)𝑏𝑖

𝑘
𝑖=1                                                                                        (8) 

    Given that B = (bi : bi = qi; i = 1; ... ; k}, χ(t) is the Projection of x(t) onto the k-dimensional principal subspace, bᵢ is the 

iᵗʰ selected eigenvector (same as qᵢ), bᵢᵗ x(t) is the scalar projection of x(t) onto bᵢ , and k is the number of top principal 

components. Equation 9 demonstrates the mapping error of x(t) by determining the distance d between x(t) and, 𝜘(𝑡): 

𝑒𝑡 = 𝑑(𝑥(𝑡), 𝜘(𝑡))                                                                                       (9) 

    Where eₜ= Projection or reconstruction error at time t, x(t)= Original data sample, χ(t) = Projected sample, and  

d(x(t), χ(t)) = Distance between original and projected data (e.g., Euclidean distance). The algorithm for the Principal 

Component Analysis (PCA) procedure is summarized in Table 1. 

 

Table 1: Feature selection and dimensionality reduction 

Table 1: Feature Selection and Dimensionality Reduction 

I    Input: 

Dataset X, where X consists of n samples, each containing T features. 

 

Su Subroutine: COMPUTE_IG (X) 

1. Determine the Entropy: 
Determine the estimated amount of information necessary to classify a specific instance. 

2. For Each Attribute Ti: 
o Compute the entropy of Ti. 

o Compute the information gain of Ti. 

3. Select Top k Attributes: 
o Select the k attributes with the highest significant information gain values. 

o Let Y represent these top k attributes. 

4. Return Y: 
o The subset of selected features. 

 

S    Subroutine: PERFORM_PCA(Y) 

1. Calculate the Covariance Matrix: 
o Calculate the matrix for obtaining the covariance of the feature subset Y. 

2. Compute Eigenvalues and Eigenvectors: 
o Extract eigenvectors alongside eigenvalues (λ1,…,λi) from the covariation matrix. 

3. Select Principal Components: 
o Identify the k eigenvectors corresponding to the largest eigenvalues. 

o Let Z represent these k-dimensional principal components. 
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3.3 Dataset 

    The PCA-MLP model, combining Principal Component Analysis for dimensionality reduction and Multilayer 

Perceptron for learning and classification, was employed in detecting DoS attacks. The CIC-DDOS2019 dataset, provided 

by the Canadian Institute for Cybersecurity was downloaded online at: https://www.unb.ca/cic/datasets/ddos-2019.html, 

included the CICDDoS2019 statistics, encompassing various DoS and DDoS attacks along with multistage attacks. The 

dataset used, Pre-processed using the CICFlowMeter, contained 88 network traffic features recorded in CSV format. The 

dataset used contained 73,498 samples, 19,448 samples of DrDoS_NTP attacks, 24,308 of TFTP, 9,934 of benign and 

19,808 samples of syn. The CIC-DDOS2019 dataset was split into two distinct subsets. Approximately 20% of the dataset 

was allocated for testing, while the remaining 80% was designated for training purposes. Python's scikit-learn library 

provided the foundational tools for implementing the PCA-MLP hybrid learning model. The training process carried out 

using Google Colab, a cloud-based environment known for its computational resources and compatibility with the required 

machine learning libraries. 

3.4 Training and Evaluation 
   The training and evaluation phase of the PCA-MLP hybrid model involved fine-tuning essential hyper parameters to 

achieve optimal performance in detecting Denial-of-Service (DoS) attacks. The model was constructed with a hidden layer 

architecture of (10, 10), meaning two concealed layers, each comprising 10 neurons, utilizing the Rectified Linear Unit 

(ReLU) activation function to incorporate non-linearity to the network, enhancing its ability to learn intricate patterns from 

the data. The 'adam' solver was chosen to optimize the neural network's weights during training. The model was trained for 

a maximum of 1000 iterations to facilitate convergence. Furthermore, Principal Component Analysis was employed to 

decrease the input data’s dimensionality, allowing the model to concentrate on the most significant features.  

3.5 Performance Metrics 

    The precision shows how many positive predictions are predicted correctly.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝𝑟𝑒) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                         (10) 

    The recall value is determined using Equation 11, which indicates the proportion of true positives correctly identified. 

𝑅𝑒𝑐𝑎𝑙𝑙 ∨ 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒(𝐷𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                           (11) 

Equation 12 calculates the accuracy, revealing the model's accuracy in making correct predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                                                               (12) 

Equation 13 shows the F1 score used to assess the effectiveness of a classification model, especially in cases where there is 

an imbalance between the classes. It considers both precision and recall, providing a balanced measure of the model's 

accuracy. 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                           (13) 

 

Where TP = True Positive, FP = False Positive, TN = True Negative, FN = False Negative. 

4. RESULTS AND DISCUSSION 

  Wireshark was used continuously to log data transmitted through the adapter connected to the server. When abnormal 

or suspicious activity was detected, the system generated a prompt for the user to either close the affected port or block the 

associated IP address. This anomalous data was then processed by an independent application that created IPtables rules 

for the firewall. The scanning results from Wireshark were saved to a file, which the program used to generate these rules. 

A Python GUI application, built with Tkinter, provided a user-friendly interface for the server administrator to process 

Wireshark’s output and apply the necessary firewall rules. The model flowchart is presented in Figure 3. 

To evaluate the system's effectiveness against DOS attacks, simulated attacks were conducted using tools such as 

Hping3, Nmap, and Synflood. The tests compared performance on a server equipped with the program against one without 

it. The simulation setup included a laptop (acting as the attacker) and a computer (the host/server), connected via a home 

Wi-Fi modem with internet access provided by a 4G router. The target system (host) was configured with an IPtables 

firewall, Wireshark for monitoring, and applications to detect network anomalies and update firewall rules in real-time. 

The laptop, acting as the attacker, utilized tools like Nmap for network mapping, Hping3 for crafting and sending custom 

4. Output Z: 
o The newly formed k-dimensional feature space. 

 

      Output: 

 The transformed dataset Z, reduced to k-dimensions for further processing. 
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packets, and Synflood for executing attack simulations aimed at overwhelming network traffic. During the Synflood 

attacks, network congestion was introduced, creating anomalies detected by Wireshark. An application processed 

Wireshark's output and updated IPtables with new firewall rules to strengthen security. The results showed that the number 

of firewall rules had minimal impact on UDP traffic. Throughput rates were influenced by packet size: larger packets 

resulted in higher throughput, while smaller packets yielded lower rates. The maximum throughput was observed with a 

packet size of 1 kilobyte, but performance declined when the size increased to 1.5 kilobytes. 

This flowchart displayed in Figure 3 provides a concise overview of the DDoS mitigation workflow using the CIC-

DDoS2019 dataset. It starts with data pre-processing, where the dataset is split into training and testing subsets. Each 

subset undergoes normalization to ensure consistent feature scaling. The training set is labelled as ‘Normal’ or ‘Attack’ and 

used to train the model. The testing set is passed through a firewall model, which applies the trained classifier to detect 

threats. The model's performance is then evaluated using precision, recall, F1 score, and accuracy metrics. This flow 

effectively demonstrates the end-to-end pipeline from data acquisition to performance evaluation and firewall deployment.  

4.1 Latency 
The results show that increasing the number of filtering rules on firewalls leads to a slight decrease in the transaction rate, 

indicating degraded performance as the rules are increased.  

4.2 Firewall Performance 

Repetitive simulation processes over a set period of time showed that the collaborative algorithm between Wireshark 

and IPtables worked effectively. Approximately 70% of IP threats, especially those using Nmap for open port scanning and 

Hping3 for attacks, were successfully blocked. Figure 3 highlights the trade-off between processing efficiency and the 

complexity introduced by filtering rules and data payload sizes. In Figures 4 and 5, various configurations of request (Req) 

and response (Res) sizes, were used both for low performance (throughput) system and high performance (throughput) 

system. Generally, as the number of filtering rules increases (from 0 to 1000), the transaction rate per second decreases for 

most configurations. This indicates that additional filtering rules impose a computational overhead, slowing down 

transaction processing. However, configurations with larger payloads (such as Req=512, Res=1024) show significant 

performance degradation. The configuration with the smallest payload size (Req=1, Res=1) consistently achieves the 

highest transaction rates across all levels of filtering rules while the configuration with the largest payload size (Req=512, 

Res=1024) has the lowest transaction rates, especially as the number of rules increases. Figure 6 presents the general model 

flowchart. A summary of performance metrics used on different DoS attack classes in this study is presented in Table 2. 

            

Table 2: Summary of performance metrics on different DoS attack classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

            Figure 3:  Transaction (Trans.) versus number of filtering rules 

Label                           Precision(%)      Recall(%)        F1 Score(%)         Accuracy 

DrDoS_NTP                   92.90                78.40                85.00                    92.70 

TFTP                               93.40                96.30                94.80                    96.50  

Benign                             80.00                88.30                83.90                    95.40 

Syn                                  91.60                97.20                94.30                    96.80  
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Figure 4: Transmission rate per sec vs. Number of filtering rules for a low throughput System 

 

 

 
Figure 5: Transmission rate per sec vs. Number of filtering rules for a high throughput System 

 

The confusion matrix is shown in Figure 7. It shows that class 0 made 15,250 correct predictions. class 1 made 23,419 

correct predictions, class 2 made 8,776 correct predictions while class 3 made 19,251 correct predictions. The Precision-

Recall graph shown in Figure 8 demonstrates the balance across precision and recall at various probability thresholds, 

emphasizing positive class prediction quality, making it particularly useful in scenarios with imbalanced classes.   

4.3 Comparison of Proposed Model with Recent Studies 

A table comparing the results obtained from this study with a number of recent studies is presented in Table 3. 

4.4 Limitations of the Study 

While this study demonstrates the effectiveness of a PCA-MLP model integrated with a real-time firewall for DDoS 

mitigation, it has certain limitations. The approach was validated in a simulated environment, and real-world deployment 

has not been tested. Additionally, the model's performance is evaluated on a single dataset (CIC-DDoS2019), and its 

generalizability to other datasets or live traffic scenarios remains to be explored.  

    While these simulation results are promising, real-world network environments present additional challenges not fully 

captured in the controlled testing environment. Factors such as variable network conditions, diverse traffic patterns, and 

hardware constraints may impact the model's performance in production settings. Future work will focus on deploying the 

system in limited real-world scenarios to validate its performance under actual network conditions and to identify potential 

implementation challenges that may not be apparent in simulations.  
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                   Figure 6: Flowchart of the PCA-MLP model 

 

                                                        

 

 

 

 

 

 

 

 

 

 

 

 

  

                      Figure 7: Confusion matrix of the model 

 

         

 

             

 

 

 

 

 

 

 

 

 

                                                                           

Figure 8: Precision-Recall curve of the model 
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Table 3: Comparison of proposed model with recent studies 

 

4.5 Integration and Adaptability of the Proposed Solution 

The proposed PCA-MLP-based detection system is designed for compatibility with existing Linux-based network 

infrastructures. By leveraging standard tools such as Wireshark and IPtables, it can be easily integrated into real-time 

monitoring setups. The system is adaptive, dynamically generating firewall rules in response to detected threats, thereby 

reducing reliance on static configurations. This adaptability allows for real-time updates and responsiveness to emerging 

attack vectors, making it suitable for evolving IoT environments. 

5. CONCLUSION 
This study presents an integrated PCA-MLP model with a real-time firewall mechanism for mitigating DDoS attacks 

on IoT devices over 4G networks. Unlike existing methods, the proposed approach combines intelligent detection with 

active prevention, achieving high accuracy while dynamically filtering malicious traffic. This hybrid system improves 

security, scalability, and responsiveness in resource-constrained environments. The work advances current research by 

bridging the gap between detection and real-time mitigation, offering a practical solution for modern IoT security 

challenges. The results demonstrated that larger packet sizes achieved higher throughput rates; however, an increase in the 

number of filtering rules caused a slight decline in transaction rates. In summary, the proposed packet filtering approach, 

incorporating a firewall and the PCA-MLP hybrid model, provides an efficient method for detecting and mitigating 

DoS/DDoS attacks. Future research could aim to enhance the system's long-term performance, refine detection accuracy, 

and minimize false positives by exploring additional optimization techniques. 
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