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Abstract: Sand production is one of the major challenges in the oil and gas industry, impacting the operational integrity and economic 

efficiency of oil extraction activities. This study focuses on predicting Reservoir Flow Capacity (RFC) in sandstone formations by 

analyzing geological and petrophysical properties critical to reservoir performance and mechanical stability. It also identified key 

factors that impact the mechanical stability of formations during production. Given a large number of input variables that enclose 

geological and environmental factors, the study set the correlation of these conditions to provide profound analysis and reveal profound 

patterns within the data. With the following supervised machine learning algorithms: Random Forest, Artificial Neural Network (ANN) 

and Support Vector Regression (SVR); the study modeled RFC. The algorithms were selected for their ability to model complex 

relationships in reservoir characterization, with Random Forest excelling in high-dimensional data handling, ANN in pattern learning, 

and SVR in regression-based predictions.  Model evaluation using R-Squared metrics showed that the Random Forest model possesses a 

good level of accuracy of  0.9573 in predicting the RFC, compared to the ANN and SVR model which had R-Squared values of 0.9390 

and 0.7294 respectively. The SVR model had large variations from the actual values and hence was not very useful for our predictions. 

Further analysis using the developed machine learning models revealed that geological formation thickness, reservoir thickness, and 

permeability are the most critical parameters influencing reservoir flow capacity and overall rock stability. 
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1. INTRODUCTION 
Crude oil drilling is a complicated exercise designed for extracting the oil found below the surface of the earth, an 

important activity in the global economy. Hence this process has various stages right from the selection of the site, drilling 

and finally production of crude oil. The drilling process can be categorized into three stages, namely: Site Selection or 

Preparation, Drilling Process and Well Completion and Production. The process starts by conducting geological 

exploration in order to establish areas which could possibly contain oil reserves. Exploration of crude oil entails making a 

hole through the surface of the earth to the subsurface with depths extending up to few thousands of feet. After reaching 

the target depth, the well is completed to allow for the safe and efficient production of oil. 
Among the various challenges encountered during oil production like: produced water management, carbon capture and 

sequestration, in-situ molecular manipulation, etc [1]. As shown in Figure 1, it is capable of causing problems to 

equipment. For example, sand erosion of downhole and surface equipment and sand accumulation on surface and Sand 

Disposal. The management of sand production stands out due to its significant impact on operational efficiency, equipment 

integrity, and overall safety [2]. Sand management in oil production is a critical discipline that aims to predict, control, and 

mitigate the production of sand, ensuring the economic viability and longevity of oil wells [3]. 
The important decision-making problems in offshore drilling for crude oil is that of allocating various target locations 

in the field to drill, to available drilling rigs as well as selecting appropriate control measures [4]. Selecting an optimum 

sand control strategy depends on various factors such as reservoir characteristics, available service infrastructure, 

production rates, production strategy, and the extent of skin damage. The challenge of sand production in crude oil drilling 

necessitates a multidisciplinary approach, combining geological understanding, engineering design, and operational 

management to minimize its impacts and ensure safe, efficient, and sustainable oil production. 
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Figure 1: The Process of sand production in oil reservoirs [5]  

The genesis of sand production is inherently linked to the physical and chemical interactions between the reservoir rock 

and the in-situ fluids under the dynamic conditions of oil extraction. Some attributes that influence occurrence of sand 

include the nature of the formation rocks, permeability, porosity and the state of the in-situ stresses typical of the reservoir. 

Other factors which include drilling practices, production volume besides well completion methodologies may enhance or 

minimize sand production. Sand control, therefore, pertains to establishing a proper evaluation of sand occurrence, and the 

interrelation between geology or the earth science, and engineering in protecting reservoirs for oil explorations. 
Gaining information on flow capacities of reservoirs is important for maximizing the recovery of oil and relative 

stability of the production system. The abilities with which the reservoir rock allows fluid to flow are measured through 

properties such as permeability and porosity. Such geological properties are useful in determining the performance of the 

reservoirs in case of petroleum liquids. It is realized that sand production could depend directly on the lithology and other 

geological parameters of the reservoir rock [6]. Sand production comes about when formation rock strength proves to be 

unable to hold pressures, that is, when the induced stresses exceed the reservoir rock in situ strength [7]. Lithologic factors 

such as grain size, the amount of cement, and rock composition influence the mechanical strength of the rock [8]. These 

characteristics also affect the reservoir rock's susceptibility to erosion forces driven by production stresses [9]. Therefore, 

the geological and lithological features of the reservoir should be well understood by the intending policy maker. By using 

geotechnical analysis in conjunction with the flow dynamics of the reservoir, we can evaluate sand production risk and 

control its occurrence in the wellbore. Apart from optimizing the process of recovery of the oil, integrating geotechnical 

analysis with reservoir flow dynamics provides us with more insights. It ensures the maintenance of the structural integrity 

of the well and its surrounding formation. 
Predicting sand occurrence during crude oil drilling is crucial for ensuring operational efficiency and mitigating 

potential production challenges. Cheddad, [10] utilized ANN, RFC and SVM to predict permeability in heterogeneous 

reservoirs. The study showed that integrating the Flow Zone Indicator rock typing technique with the machine learning 

algorithms effectively predicts permeability. However, this study did not directly predict reservoir flow capacity or address 

sand production issues. Similarly, Krishna et al., [11] compared nine different machine learning methods to predict pore 

pressure in Mangahewa gas field, New Zealand. Among these, the Decision Tree model performed excellently, achieving 

RMSE values between 0.25 and 14.71 psi. While the study provided us with valuable insights into pore pressure 

prediction, it also did not directly address RFC or sand production challenges. Ali et al., [12] employed unsupervised 

clustering with class-based ensemble machine learning to predict elastic logs in heterogeneous rocks. The methodology 

improved the accuracy of reservoir characterization by effectively handling complex geological data. Otmane et al., [13] 

developed a hybrid method of combining traditional reservoir simulation with machine learning techniques to boost 

reservoir prediction accuracy. This integration of the machine learning techniques addresses major issues of the traditional 

methods such as high computational costs. 
The reviewed studies demonstrate the application of machine learning techniques in enhancing reservoir 

characterization and prediction accuracy. However, there remains a gap in research specifically targeting the prediction of 

Reservoir Flow Capacity (RFC) in sandstone formations concerning sand production challenges. Accurately predicting 

RFC is important for maintaining operational integrity and economic efficiency of oil extraction activities. Therefore, this 

study predicts Reservoir Flow Capacity (RFC) in sandstone formations by evaluating and comparing the performance of 

three distinct machine learning algorithms – Random Forest (RF), Artificial Neural Networks (ANN), and Support Vector 

Regression (SVR). It also identifies key geological and petro physical factors influencing RFC by using feature importance 

analysis. It focuses on optimizing reservoir performance and understanding the implications of geological parameters on 

rock stability and production efficiency. 

2. MODEL DEVELOPMENT AND METHODOLOGY 

Machine learning (ML) models represent transformative approaches to predicting the effects of the geological 

composition of reservoirs in the drilling of crude oil. The research design employs a comprehensive machine learning-

centric approach to predicting the flow capacity within geological reservoirs. 
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2. 1 Data Collection 

The dataset was sourced from the OpenEI’s Geothermal Data Repository (GDR), [14] and contains the following 

features:  temperature gradients, geological formations, lithology, porosity, permeability, and geospatial coordinates. This 

information forms the basis of our exploratory analysis and prediction modeling that will unravel the patterns for 

predicting the reservoir flow capacity in these formations. A statistical summary of both numerical and categorical features 

of the dataset is shown in Table 1 and Table 2. 

2.2 Data Preprocessing 

In order to prepare our dataset for the model training and validation, we applied important key preprocessing steps to 

ensure the usability and integrity of the data. We carefully assessed missing values with strategies based on the distribution 

of the affected feature data. The mode was used in filling missing values in the sea level elevation column because it had a 

skewed distribution while mean was used to populate missing reservoir temperature data because it was normally 

distributed [15]. Missing values in sea level elevation were imputed using the mode, while those in reservoir temperature 

were replaced with the mean. These approaches were selected to preserve the dataset's statistical properties while 

minimizing distortion in feature distribution. 
Normalizing the dataset was also very important at this stage to get better results. Two different classes of data were 

normalized, namely: the categorical data and the numerical data. The nominal data from ‘State’ and ‘ Play type’ fields 

were one-hot encoded as it is the effective way to feed categorical data to the ML algorithms. One-Hot Encoding is a 

technique used to convert categorical data into a binary format where each unique category is represented by a vector with 

all values set to 0 except for one position marked with a 1. This approach allows machine learning models to handle 

categorical variables by transforming them into a numerical format without implying any ordinal relationship. Numerical 

features were scaled to minimize variation thereby improving model fit and overall performance. 
We then carried out feature selection by analyzing the correlation of the features with the target variable as seen in 

Figure 2a, 2b and 2c.  Due to a very low coefficient of determination, we dropped the following geographical predictors: 

state codes, longitude and latitude for better model accuracy. Formation thickness, reservoir thickness and permeabilities 

with moderate correlation coefficients with RFC were retained while geographical features with extremely weak 

coefficients were removed. These are sea level elevation, porosity, reservoir temperature, reservoir depth and Lithostatic 

pressure. 

 

 
(a)  

 
Figure 2: Correlation heatmaps: (a) location features, (b) lithological features, (c) geological features to target RFC values
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Table 1: Statistical summary of numerical features of the dataset 

 
Latitude Longitude 

Elevation 

Above 

SeaLevel (m) 

Geological 

Formation 

Thickness (m) 

Reservoir 

Thickness 

(m) 

Average 

Porocity 

(pct) 

Reservoir 

Temperature 

(C) 

Reservoir 

Depth 

 (m) 

Reservoir 

Lithostatic 

Pressure 

(Mpa) 

Gas 

Permeability 

(mD) 

Liquid 

Permeability 

(mD) 

count 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 

mean 40.9629 -79.5415 26.9208 24.4407 21.0114 8.5867 48.3874 1628.8207 41.5447 9.2141 10.7433 

std 0.9432 0.9594 118.7086 53.4236 45.0646 3.2177 11.5487 415.8931 10.6081 165.3143 214.2580 

min 37.2792 -82.0044 0.0000 0.6096 0.6100 0.0000 17.0000 330.4640 8.4300 0.0010 0.0003 

25% 40.2410 -80.2062 0.0000 5.1816 4.5700 6.0000 41.0000 1353.6933 34.5300 0.1000 0.0542 

50% 41.2248 -79.7738 0.0000 15.8496 15.0000 8.0000 47.0000 1478.2800 37.7100 0.1850 0.0908 

75% 41.6751 -78.9585 0.0000 28.0416 27.4300 11.0000 54.0000 1752.6000 44.7000 2.0000 1.5930 

max 43.0534 -75.8800 1673.3520 1013.1552 1013.2000 20.0000 114.0000 3992.8800 101.8400 4152.0000 5384.6335 

 
Table 2: Statistical summary of categorical features of the dataset 

 
Location (State) Lithology Type Play Type 

 
NY PA WV Chert Dolomite 

Lime 

Stone Mudstone 

Sand 

Stone Unknown  

Inter- 

granular Combined Fracture Unknown 

count 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 1894.0000 

mean 0.0544 0.8654 0.0803 0.0079 0.0053 0.0375 0.0375 0.8537 0.0491 0.0919 0.0929 0.8041 0.0111 

std 226830.0000 0.3414 0.2718 0.0887 0.0725 0.1900 0.1900 0.3535 0.2161 0.2889 0.2904 0.3970 0.1047 

min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

25% 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 

50% 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 

75% 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 

max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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(b) 

 

 
(c) 

Figure 2 cont’d: Correlation heatmaps: (a) location features, (b) lithological features, (c) geological features to target RFC 

values 
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RFC_P50 was selected as the target variable because it showed a strong correlation with RFC_P10, RFC_P25, RFC_P75, 

and RFC_P90 as seen in Figure 4a, with a maximum deviation of only 0.02. This close relationship indicates that 

RFC_P50 can effectively represent all these variables. By using RFC_P50 as a single target, we minimized redundancy in 

the dataset and improved the overall efficiency and reliability of the model. Finally, to ensure the model's ability to 

generalize, the dataset was split into training and testing sets, with 80% used for training and 20% for testing. This method 

implemented using the ‘train_test_split’ function from scikit-learn with a random state of 42, provided a reliable 

foundation for evaluating the models' predictive accuracy. Figure 3 describes the model building flow chart for the work in 

general. 
 

 

 
Figure 3: ML Model building flowchart 

 
2.3 Model Training 

In the development of our predictive models, we selected three powerful and diverse machine learning techniques. 

These are Support Vector Regression (SVR), Artificial Neural Networks (ANN) and Random Forest. Each of these models 

possesses different advantages in dealing with nonlinearity and large datasets, which are essential in predicting our 

reservoir flow capacity. SVR was selected because of its ability to capture complex nonlinear relationships in high 

dimensional spaces, ANN for its competence in learning intricate patterns, and Random Forest for its robustness in 

handling feature interaction and also preventing overfitting.  
While other regression models such as Gradient Boosting Machines (GBM) and Extreme Gradient Boosting (XGBoost) 

are commonly used in prediction modelling, they were not included in this work due to computational considerations and 

focus on models with established interpretability in reservoir characterization [16]. For example, Random Forest provides a 

comparable advantage in capturing non linearity while being computationally more efficient on large datasets [17]. 
The same distribution of the train-test split consisting of 1372 and 343 data points respectively was used across all the 

algorithms. 

2.3.1 Support vector regression (SVR) 

Support Vector Regression (SVR) is considered as a standard technique in supervised learning, particularly suited for 

linear fitting with data that may be non-linearly distributed. The SVR algorithm can perform the following functions: 
1. Linear Fitting: SVR is fundamentally a method of linear fitting technique and works well only for linearly 

distributed data. In the case of nonlinear distributions, a specific nonlinear mapping is used on the data and the result 

is then used in a higher dimensional space where a linear method can be used to fit to the training data. 

2. Optimal Hyperplane Construction: SVR aims at building the best hyperplane for the feature space through 

minimizing the regularized risk. Unlike traditional regression models, SVR incorporates a structural risk 

minimization framework that enhances its capability to achieve a global optimum, thereby reducing the risk of 

overfitting. Given a training sample set shown in Equation 1:  

𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚 , 𝑦𝑚)} with 𝑦𝑖  ∈  𝑅,                   (1) 

The objective of Equation 1 is to construct a regression model that closely predicts y shown in Equation 2. 

𝑓(𝑥) =  𝑤𝑇𝑥 + 𝑏                           (2) 
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Here, 𝑤 and 𝑏 are the model parameters that need to be optimized. Traditional regression minimizes the error between the 

predicted output 𝑓(𝑥) and actual value of 𝑦. In contrast, SVR introduces a margin of tolerance 𝜖, where no penalty is 

applied if the prediction error falls within this margin. The optimization problem can be formulated as: 

min𝑤,𝑏
1

2
 ∥ 𝑤 ∥2 + 𝐶 ∑ 𝑙𝜖(𝑓(𝑥𝑖) − 𝑦𝑖)𝑚

𝑖=1                      (3) 

where C is a regularization constant, and l is the -insensitive loss function defined as: 

𝑙𝜖(𝓏) =  𝑓(𝑥) = {
0,  𝑖𝑓 |𝓏|  ≤  𝜖.

|𝓏| −  𝜖,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                    (4) 

In practical scenarios, kernel functions are employed to map the input data to a high-dimensional space, allowing the SVR 

algorithm to handle nonlinear relationships. Some commonly used kernels include:Linear kernel, Polynomial kernel, 

Gaussian kernel and Sigmoid kernel. These kernels facilitate the computation of inner products in higher-dimensional 

spaces, enabling SVR to model complex, nonlinear relationships effectively. 
We varied different Kernel types, such as the Linear Kernel and Radial Basis Function (RBF) in assessing the 

distribution characteristics of our data-set. This was achieved by employing a systematic approach parameter tuning using 

GridSearchCV tool in Scikit-learn library. The GridSearchCV function is used for hyperparameter tuning in machine 

learning models. This involves setting the parameters for the kernel type, regularization parameter, epsilon etc. The 

parameter grid is defined as: 

 
parameter_grid = { 

   estimator_kernel:  ['linear','poly', 'rbf'],  

 estimator_c:  np.range200, 500, 50 #Range from 200 to 500 with steps of 50, 

estimator_epsilon:np.range3, 7, 0.5 #Range from 3 to 7 with steps of 0.5 

     } 

where estimator_kernel is the kernel type 

estimator_c is the regularization parameter 

estimator_epsilon is the epsilon in the epsilon-SVR model 

 
This approach enabled us to examine different ranges of the configurations in order to find the best combination. 

Before training the model, weights were adjusted optimally with the help of the parameter grid to reduce the loss 

function.  Our SVR model was validated using an independent testing dataset by cross-validation. This validation step is 

critical since it helps in testing the model’s ability to generalize in other unseen data. 

2.3.2 Artificial neural network (ANN) 

An Artificial Neural Network (ANN) emulates the data processing patterns observed in biological nervous systems like 

the human brain, albeit on a significantly smaller scale. The core concept involves devising novel information processing 

structures [18]. In this system, every connection has a specific weight, and each neuron is defined by a threshold value and 

an activation function [19]. The influence of an input's weight determines whether it has a positive or negative impact on 

the signal transmitted across a connection. A neuron will only relay a signal if the combined input exceeds its threshold. 

The activation value, a weighted sum, dictates the neuron's output, establishing a direct link between the weights of 

elements and the ANN's inputs and outputs, as illustrated in Figure 4. 

 
Figure 4: Inputs, weights of each input element and output of the ANN system. 

ANNs can be categorized into two topologies: Feed Forward and Feedback. Feed Forward systems lack feedback 

loops; information only travels in one direction, ensuring that inputs and outputs remain static. Each unit takes an input 

from the previous units subsequently and weights the inputs by the connections to decide the output outcome based upon 

the weights it has received. On the other hand, Feedback ANNs use content addressable memories in learning process 

steps. This involves the changing of the weights between the connection weights based on the difference between the 

output of the network and the expected output [20]. With this feedback mechanism, weights may be adjusted dynamically 

to enhance the network’s accuracy and also its performance. 
We trained the model through backpropagation algorithm wherein the weights of the network were adjusted to reduce 

the error difference between the predictions from the actual output. This process was implemented using the TensorFlow's 
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Keras architecture. The model was initiated as a sequential stack of neural network layers. We employed the ReLU 

activation function. This was chosen because of its effectiveness in adding non-linearity to the model and also reducing 

vanishing gradients. The input layer constituted 128 neurons, the hidden layers were varied to derive the optimal number 

for our use case, and the output layer was a dense linear layer typical for regression tasks. In order to achieve stability and 

efficiency in the training process, we used the ‘adam’ optimizer to a set  clipnorm of 1. 0 for the purpose of gradient 

clipping. Then, we integrated the  ReduceLROnPlateau callback as a dynamic learning rate scheduler for the training 

process.  This scheduler automatically reduces the learning rate by a factor of 0.2 whenever the validation loss shows no 

improvement for 10 consecutive epochs. The training process also included an early stopping mechanism set with patience 

of 30 epochs. This callback was added to stop the training process when the validation loss was no longer improving and 

also retrieving the best model weights during the training. 
2.3.3 Random forest 

These models are based off tree-like model of decision and its consequence, which makes them intuitive and easy to 

interpret. The decision trees developed as a way of constructing discriminative models are one of the oldest and the most 

popular methods applied in both statistical and machine learning fields, evolving independently across the disciplines [21]. 
The Bagging algorithm developed by Leo Breiman set the foundational groundwork for the inception of Random Forests. 

Bagging (or Bootstrap Aggregating) is a process of generating a predictor-like decision tree in multiple versions on various 

subsets of original data, which are then sampled with replacements and combines the versions together to form better 

prediction accuracy. Based on this concept, the Random Forests include another layer of randomness in the process of 

creating trees alongside with the use of bootstrapped samples. Random Forests (RF) is a rather unique ensemble machine 

learning algorithm which encompasses a series of tree classifiers. In this ensemble, each tree votes towards identifying the 

most prevalent class, the votes are then aggregated together in order to produce the prediction outcome [22]. Thus, 

Random Forests are characterized by high accuracy. They are less sensitive to noise, outliers and usually do not over fit 

data. 
We used the Random Forest Regressor class from the scikit-learn package and tuned hyperparameters that control the 

complexity of the model. These are: number of trees present in the forest (n_estimators), the maximum depth of each tree 

(max_depth) and minimum number of samples required to split an internal node (min_samples_split). 

A grid search technique was employed to explore a range of values for these hyper-parameters. In this study, we set ranges 

of our grid parameters for the n_estimators and min_samples_split to [50, 100, 200, 300, 400, 500] and [2, 5, 10, 20] 

respectively. The optimal hyperparameters obtained from the grid search were then used to train the model. 

2.4 Model Evaluation 

The models were evaluated based on three performance metrics, namely: R-Squared, Mean Absolute Error (MAE), 

Mean Square Error (MSE), and Explained variance. These metrics tell us the overall fit of the model, provide an average 

error magnitude and focus on the portion of variability the model accounts for respectively. 

1. R-Squared (𝑅𝟐): also known as the coefficient of determination, provides an indication of how well the model 

explains the observed data, it measures the proportion of the variance in the dependent variable that is predictable 

from the independent variables with a value of 1 meaning the model explains all variability and 0 meaning it 

explains none. The formula is shown in Equation 5. 

a. 𝑅2 = 1 −  
∑ (𝑦𝑖 −  �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 −  �̅�)2𝑛
𝑖=1

                       (5) 

b. where: 𝑦𝑖  is the actual value, �̂�𝑖  is the predicted value, 𝑦 ̅is the mean of the actual values, 𝑛 is the number 

of observations. 

2. Mean Absolute Error (MAE): provides a straightforward measure of prediction accuracy by showing how close 

predictions are to the actual values on average, i.e. the average of the absolute errors between predicted and actual 

values with lower values indicating better performance. The formula for calculating MAE is shown in Equation 6. 

a. 𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 −  �̂�𝑖|

𝑛
𝑖=1                      (6) 

b. Where: 𝑦𝑖  is the actual value, �̂�𝑖 is the predicted value, 𝑛 is the number of observations. 

3. Mean Squared Error (MSE): as shown in Equation 7 measures the cumulative average squared difference 

between the actual and predicted values. Unlike MAE, MSE penalizes larger errors more heavily because of the 

squaring, making it particularly sensitive to outliers. A lower MSE indicates better model performance. 

a. 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1                      (7) 

b. Where: 𝑦𝑖  is the actual value for observation 𝑖, �̂�𝑖 is the predicted value for observation 𝑖, 𝑛 is the number 

of observations. 

4. Explained Variance: quite similar to 𝑅2, measures the proportion of the variance in the target variable that the 

model explains. It however focuses solely on how well the model captures variability, without penalizing for the 

model’s prediction bias. The formula is shown in Equation 8. 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  1 − 
𝑉𝑎𝑟( 𝑦 − �̂� )

𝑉𝑎𝑟(𝑦)
                    (8) 

where: 𝑉𝑎𝑟(𝑦) is the variance of the actual values, 𝑉𝑎𝑟(𝑦 − �̂� ) is the variance of the errors (actual - predicted 

values).  
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3. RESULTS AND DISCUSSION 

Each of the models developed was tested to predict Reservoir Flow Capacity (RFC) based on a selection of geophysical 

attributes. We present the evaluation of each model’s performance by analyzing their predictive accuracy, the relevance of 

the features they considered and their ability to handle the complexity of the features. Feature importance analysis was 

conducted for the RF and SVR models due to their inherent ability to rank input variables. However, the ANN model does 

not readily provide feature importance because it operates a black box model; hence, this analysis was not performed.  
SVR: Upon evaluation of our grid search, as shown in Figure 5a, 5b and 5c, we found the optimal kernel type, 

regularization and epsilon parameter, as: (kernel='poly', C=450, epsilon=3.0) and  our SVR model was trained on this. 

  
(a): Grid search results for the linear kernel, showing relatively low R-squared values across all hyperparameter 

combinations. 

 

 

 
(b):  Grid search results for the polynomial kernel, which demonstrates significantly higher R-squared values compared to 

the linear and RBF kernels. 

 

Figure 5: R-Squared scores for SVR Hyper-Parameter Grid Search 
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(c): Grid search results for the RBF kernel, showing moderate performance improvement with increasing C values. 

 

Figure 5: R-Squared scores for SVR Hyper-Parameter Grid Search (Cont’d) 

 
An insightful feature importance analysis revealed in Figure 6 that geological formation thickness and reservoir 

thickness emerged as highly influential features, garnering importance levels of 8 and 9, respectively, on a scale of 1 to 10. 

This shows the model's inclination towards prioritizing these features in its predictions. Conversely, features such as gas 

permeability and liquid permeability, with importance levels of 0.1 each, were deemed less impactful in the model's 

decision-making process. 

 

 
Figure 6: SVR feature importance of geological features to target variables 

 
ANN: The variation in the number of hidden layers in the ANN model was centered on optimizing its training process. The 

training and validation loss reduction was recorded over epochs, and its ability to model intricate patterns not readily 

apparent to other models. Each ANN model training was varied with increasing numbers of hidden layers in steps of one, 
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i.e. we trained each model with 1-10 hidden layers respectively. Each model had varying epochs as the number of hidden 

layers varied because of the early stopping mechanism we implemented in the methodology. Each ANN model trained on 

its varying epochs and number of hidden layers also predicted different outputs and yielded different results. The optimum 

network configuration had 9 hidden layers with an R-Squared value of 0.939 shown in Figure 7 and Mean Square Error 

of 1065 shown in Figure 8. 

 
Figure 7: Relationship between the number of ANN hidden layers and the R-Squared value 

 

 
Figure 8: Relationship between the number of ANN hidden layers and the MSE value 

 
RF: We also examine the results from the grid search for our Random Forest model optimal hyper-parameters. The 

outcome of the grid search showed that the optimal number of estimators and minimum samples split for our data are 100 

and 2 respectively as shown in Figure 9. 

The feature importance plot for the Random Forest model in Figure 10 provides further insights into which features are 

most influential in the prediction of RFC values. It shows that geological formation thickness and liquid permeability are 

the most significant predictors, holding the highest importance scores. The importance of liquid permeability reiterates the 

fact that the ease with which a fluid passes through a reservoir's pores is intuitively a determining factor for the flow 

capacity. Likewise, the thickness of the geological formation points to the volume available for fluid storage and flow, 

reinforcing its relevance. 
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Figure 9: MSE scores for the random forest hyper-parameters grid search 

 

 
Figure 10: Random forest feature importance of geological features to target variables. 

 
Table 3 summarizes the final selected hyperparameters from grid search for SVR and Random Forest while it also contains 

the number of hidden layers used for the ANN model. 

Table 3: Summary of the optimal hyper-parameters 

ML 

Algorithm 
Kernel C (Regularization 

Parameter) 
Epsilon No of 

estimators 
Minimum samples 

split 
No of hidden 

layers 
SVR poly 450 3.0 N/A N/A N/A 
ANN N/A N/A N/A N/A N/A 9 
RF N/A N/A N/A 100 2 N/A 
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The feature importance analysis carried out using the SVR (Figure 7) and RF (Figure 11) models revealed that 

geological formation thickness, reservoir thickness and permeability (gas and liquid) are the most critical factors in 

predicting RFC. These findings underscore the importance of geological and petrophysical characteristics in reservoir 

performance and mechanical stability. The dominance of geological formation thickness indicates its strong influence on 

the structural integrity and fluid migration pathways within the reservoir. Reservoir thickness which was also found to be 

important determines the volume of hydrocarbon-bearing rock and influences pressure dynamics during production. 

Additionally, gas and liquid permeability exhibited high importance in both models, highlighting the direct impact on fluid 

mobility, production rates and overall reservoir efficiency. 
These observations align with recent studies emphasizing the importance of geological and petrophysical properties in 

reservoir characterization. For instance, Osahon et al., [23] demonstrated that integrating geological formation thickness 

and permeability data enhances the accuracy of reservoir models. Similarly, Solanke et al [24]  highlighted that advanced 

geological modeling techniques, which incorporate factors like formation thickness and permeability, significantly improve 

predictions of reservoir performance. 
By assessing the three models based on key performance metrics – R-Squared, Mean Absolute Error, and Explained 

Variance, the study found that both the Random Forest and Artificial Neural Network (ANN) models exhibited strong 

capability in capturing the variability of reservoir flow capacity, as evidenced by their high R-squared values. In contrast, 

the SVR model demonstrated lower performance, as shown in Table 4. These results indicate that the Random Forest 

model achieved the best fit to the dataset. The lower performance of  the SVR model showed that the algorithm poorly 

captured the complex nonlinear relationships  present in the dataset. This could be because of the sensitivity of SVR to 

hyperparameter selection and distribution of data points which may not have effectively mapped the geological and 

petrophysical features influencing RFC. The superior performance of RF as seen in Table 4 with the highest R-squared 

value (0.9573) and lowest Mean Absolute Error (4.6545) can be attributed to its ensemble learning approach which 

combines multiple decision trees to improve predictive accuracy and reduce overfitting. From Figure 11 which shows the 

plot of the errors for the different models, it is evident that the random forest model was able to capture the patterns and 

relationships in the dataset better than ANN and SVR. 

Table 4: Performance metrics of the RFC prediction models 

ML Algorithm R-Squared Mean Absolute Error Mean Squared Error Explained Variance 
SVR 0.7294 15.2871 4727.52 0.7319 
ANN 0.9390 9.0048 1065.31 0.9412 

Random Forest 0.9573 4.6545 746.13 0.9578 

 

 
Figure 11: Prediction errors of the RFC model on sample test data 

 

4. CONCLUSION AND FUTURE WORKS 
Understanding sand occurrence requires a multidisciplinary approach, by combining knowledge of geology, petroleum 

engineering, and fluid dynamics, among others. This research highlights the potential of machine learning models in 

predicting reservoir flow capacity and assessing factors contributing to sand production. The results validate the 

https://doi.org/10.53982/ajerd.2025.0801.30-j
https://doi.org/10.53982/ajerd
https://www.zotero.org/google-docs/?k09jqh
https://www.zotero.org/google-docs/?aocKZq


https://doi.org/10.53982/ajerd.2025.0801.30-j                Ogundero et al. 

Volume 8, Issue 1 

 

https://doi.org/10.53982/ajerd    305 
 

effectiveness of machine learning in capturing complex relationships between geological properties and reservoir behavior, 

reinforcing the importance of thickness and permeability as critical predictors of reservoir flow capacity and stability. 
Higher accuracy values recorded in the RF and ANN models can be attributed to the abilities of the models in handling 

complex, non-linear relationships between features. Random forest uses multiple decision trees aggregation to capture 

complex patterns in the data and ANNs use multilayer architecture and activation functions to unravel these patterns. On 

the contrary, the SVR models are predominantly linear models, even though applying polynomial kernels introduces non-

linearity, it does not effectively capture the non-linearity as observed in RF or ANN. 
In future work, the primary focus will be on acquiring extensive real-time reservoir data from oil and gas industries. 

This will be important in improving the ability of the models to predict accurately and aid robustness of the models. The 

feasibility of real-time data acquisition will be carefully evaluated, considering industry data availability, sensor 

technology and integration with existing monitoring systems. Through incorporating real time data, the models can be 

updated and refined continuously, making it possible to get better predictions of the reservoir flow capacity and enhanced 

control of sand production over time during the drilling processes. Furthermore, there's a need to expand the scope of the 

variables we considered in our model. Introducing additional geological and petrophysical parameters that contribute to 

reservoir flow capacity will provide a better understanding of factors influencing the generation of sand and its prediction 

thereby leading to enhanced and targeted sand management strategies in drilling operations. 

Abbreviations: 
ANN: Artificial Neural Network 

GDR: Geothermal Data Repository 

ML: Machine Learning 

MAE: Mean Absolute Error 

MSE: Mean Square Error 

RFC: Reservoir Flow Capacity 

RF: Random Forest 

RFC: Random Forest Classifier 

RBF: Radial Basis Function 

ReLU: Rectified Linear Unit 

SVM: Support Vector Machine 

SVR: Support Vector Regression 
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