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INTRODUCTION

Poisson distribution has been used extensively in 
modelling count data (June et al.,1999). However, 

application of Poisson distribution may not give valid 
results due to the fact that Poisson assumption may 
be invalidated by other features dominant in the data 
thereby paving the way for other valid models to be 
examined. Among these features is over-dispersion due 
to presence of many zeros in the data. The models for 
consideration include hurdle models and zero-inflated 
models (Lambert, 1992, Famoye et al.,2004 and 2006, 
Agrest et al.2004). They are class of models that can 
handle data with under-, equi- and over-dispersion in the 
data, both the hurdle model and the zero-inflated fit into 
this scenario. The zero-inflated is similar to the hurdle 
model in the sense that a zero-inflated model separates 
the zero part from the positive part whereas the hurdle 
model allows some zeros to be analysed with the nonzero.
Zero-inflation regression model has been extensively 
used in the literature to account for excess zero that 
may arise in count data (Kazembe, 2013).  The models 
such as the zero-inflated Poisson and zero-inflated 
negative binomial were proposed when there is excess 
zero and over-dispersion in the count data.  However, 
non-zero observations may be over-dispersed, in this 
circumstance, parameter estimated would become 
biased and the standard errors underestimated. However, 
according to Mullahy (1986), zero-inflated negative 
binomial regression model better accounts for these 
characteristics compared to zero-inflated Poisson (ZIP). 
Moreover, when the number of zero in the sample exceeds 

what can be predicted by either Poisson or Negative 
Binomial, it is mostly preferred to use the ZIP or Zero-
Inflated Negative Binomial (ZINB). Other important 
models such as Zero-truncated Poison and Zero-inflated 
Negative Binomial can also be used to model excess 
zero count data where the zero counts are truncated and 
the data is strictly positive (Adarabioyo and Ipinyomi, 
2019). Furthermore, in the literature, the Poisson and 
Negative binomial have been modelled after zero-inflated 
and zero-truncated and have been widely used to model 
some real life data (Adarabioyo and Ipinyomi, 2020). 
However, this study provides alternative model known 
as a contagious zero-inflated model derived from the 
joint distribution of three-parameter Gamma distribution 
proposed by Lakshmi and Vaidyanathan 2016 and a 
Poisson distribution.

Contagious zero-inflated models for count data have 
gained considerable attention in recent years due to their 
ability to handle data with excessive zeros and over-
dispersion (Famoye and Singh, 2006)). In this section, 
we will discuss some key points related to these models 
and their implications for count data analysis.One of the 
primary advantages of contagious zero-inflated models 
is their ability to capture over dispersion in count data 
(Showkat et al., 2022). 

In many real-world scenarios, count data exhibits 
contagious behavior, where the occurrence of an 
event influences the likelihood of subsequent events. 
Contagious zero-inflated models explicitly account for 
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this behavior by incorporating contagion parameters. 
This enables researchers to understand the spread or 
transmission of events, which is particularly relevant in 
fields such as epidemiology, social sciences, and finance 
(Peer and Mohammad, 2023).

Contagious zero-inflated models have found extensive 
applications in public health research. For example, in 
disease outbreak analysis, these models can capture the 
excess zeros due to individuals who are not susceptible 
to the disease (Frank et al., 2022). Additionally, they can 
account for the contagion effect, where the occurrence 
of a disease in one individual increases the likelihood of 
infection in nearby individuals.

In economics and finance (Francisco et al., 2017), 
count data often arises in the context of rare events, 
such as financial crises or market crashes. Contagious 
zero-inflated models provide a valuable framework for 
understanding the occurrence and propagation of such 
events. By considering the contagion effect, these models 
allow researchers to assess the impact of one event on 
the likelihood of subsequent events, providing insights 
into systemic risk and contagion dynamics.

Count data analysis is a fundamental aspect of many 
research domains, including public health, ecology, 
economics, and social sciences. However, traditional 
count models, such as Poisson or negative binomial, often 
encounter limitations when analyzing data with excessive 
zeros and contagious events. Contagious zero-inflated 
models offer an innovative solution to overcome these 
limitations by providing a comprehensive framework to 
handle both excess zeros and over-dispersion contagion. 
The objective of this study is to explore the advantages 
and applications of contagious zero-inflated models for 
count data.

Among those who have explored the zero-inflated and 
or hurdle models include Lambert (1992) who proposed 
Zero-Inflated Poison with 71.8% zeros and it performed 
better than the Zero-Inflated Negative Binomial model. 
Greene (1994) also proposed ZIP with 0.894 zeros and 
heavy skews of 4.02. Slymen et al (2006) modeled ZIP 
and negative binomial ZIP with identical results and with 
uniform event stage distribution. Warton (2005) findings 
showed that negative binomial fits better than the ZIP 
only when zero-inflation and over dispersion are present. 
His results were inconsistence with Lamber (1992). 
Mendonca and Kirchner (1999) findings showed that 
the ZIP actually fit better than the Poisson given 0.216 
and 0.289 zero-deflation. These findings contradicted 
the suggestion that the hurdle model and not the ZIP 
appropriate for zero-deflated counts. However, Zorn 

(1996) found that given 0.958 zero-inflation and with 
skews of 7.97 and 1.86, the ZIP fitted better than the 
Poisson. 

Further, it has been suggested that Hurdle and ZIP models 
should be chosen given a priori research about the source 
and nature of the zeros. It was also suggested that the 
negative binomial formulations are meant to handle 
additional over-dispersion in the event stage (Jeffrey M. 
M, 2007). Famoye, (1999) fitted the restricted generalized 
Poisson regression model. It is a three parameter model 
that account for excess zeros and over-dispersion. In 
2024, he also fitted the On the Generalized Poisson 
Regression Model with an Application to Accident Data 
with the aim of identifying the relationship between the 
number of accidents and some covariates. Their results 
were compared with negative binomial regression and 
found to perform better than the Poisson Regression 
in identifying demographic factors and some other 
variables.  

Further suggestions such as the proportion of zeros, the 
nature of the event stage distribution, varying the size 
of the skew (from heavily positive skew, moderately 
positive skew and uniformly distributed) and the number 
of predictors may affect the choice of model(s) for the 
count data (Jeffero-rey, 2007).

By reviewing existing literature, analyzing statistical 
properties, and examining real-world applications, this 
study aims to provide a comprehensive understanding 
of the potential of this model.

MATERIALS AND METHODS 

The Density Function of a one-Parameter Poisson 
distribution

Let Y denote a random variable having one-parameter 
Poisson distribution with probability density function 
given as

𝑓𝑓(𝑌𝑌 = 𝑦𝑦, 𝜃𝜃) = {(𝑦𝑦, 𝜃𝜃) = 𝑒𝑒−𝜃𝜃 𝜃𝜃𝑦𝑦

𝑦𝑦!  𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦 = 0,1,2 … .
𝑓𝑓(𝑦𝑦,𝜃𝜃) = 0,   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑓𝑓𝑒𝑒

                     1 

for y = 1, 2, 3, … We recall that for a Poisson variable  

𝐸𝐸(𝑌𝑌) = 𝜃𝜃 and 𝑉𝑉𝑉𝑉𝑓𝑓(𝑌𝑌) = 𝜃𝜃. 

 

The Density Function of a three-Parameter Gamma distribution 

𝑔𝑔(𝜃𝜃; 𝛼𝛼, 𝛽𝛽, 𝜇𝜇) = (𝜃𝜃−𝜇𝜇) 𝛼𝛼−1𝑒𝑒(−
(𝜃𝜃−𝜇𝜇)

𝛽𝛽

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)   ,  −∞ < 𝜇𝜇 < ∞                             2 

−∞ < 𝜃𝜃 < ∞,  𝜃𝜃 > 0,𝛽𝛽 > 0, 𝛼𝛼 > 0,  

Equation 2 is a three-parameter Gamma distribution as proposed by Lakshmi and Vaidyanathan 
2016). 

3.2.3 Proposed reduced The Contagious model 

Given a sequence of density functions which are either discrete density or probability density 
function 𝑓𝑓0 (. ),𝑓𝑓1(. ),𝑓𝑓2 (. ),… , 𝑓𝑓𝑛𝑛(. ),… which may or may not depend on parameters and sequence 
of parameters 𝑝𝑝0, 𝑝𝑝1, 𝑝𝑝2 … , 𝑝𝑝𝑛𝑛   where 𝑝𝑝𝑖𝑖 ≥ 0 and ∑ 𝑝𝑝𝑖𝑖 = 1,∞

𝑖𝑖=1  therefore, ∑ 𝑝𝑝𝑖𝑖𝑓𝑓(𝑥𝑥) ∞
𝑖𝑖=1 is a density 

function which is also known as contagious distribution or mixture distribution proposed by Mood 
and Alexander  (1913) which is a two-parameter gamma and Poisson distribution. By applying 
this method, the contagious distribution function of the three-parameter gamma and Poisson 
distributions was obtained in equation 5. 

𝑓𝑓(𝑦𝑦𝑖𝑖,𝜃𝜃)𝑔𝑔(𝜃𝜃;  𝛼𝛼,𝛽𝛽, 𝜇𝜇) = ∫ 𝑒𝑒−𝜃𝜃 (𝜇𝜇−𝜃𝜃)𝑦𝑦

𝑦𝑦!
𝜃𝜃𝛼𝛼−1𝑒𝑒−

(𝜃𝜃−𝜇𝜇)
𝛽𝛽

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)  𝑑𝑑𝜃𝜃∞
0       3 

Setting 𝜇𝜇 = 0 
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Equation 2 is a three-parameter Gamma distribution as 
proposed by Lakshmi and Vaidyanathan 2016).
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3.2.3 Proposed reduced The Contagious model
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Equation 6 is a special case of geometric distribution

3.2.4 Moment Generating Function of the Reduced 
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function is derived as
       

The coefficients of variation (𝛾𝛾), the skewness (�𝛽𝛽�) and the kurtosis (𝛽𝛽�) of the contagious 
distribution were obtained as follows: 
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3.2.6 The Maximum Likelihood Estimation Method the Proposed Reduced Model  
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Taking the log of the likelihood function, we have 
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The score which is the first derivative of the likelihood function is derived as 
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The score is set to zero to solve for 𝛽𝛽 
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The second derivative is obtained as
 The second derivative is obtained as 
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
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��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
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� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
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The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
�

�
�

∑ 𝑦𝑦�
��

���        21 

This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 
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covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
���

� � �
���

�
��

       24 

We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
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where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 
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The Zero-Inflation of the Proposed Reduced Model
Let   be a nonnegative values of a random variable and 
if y = 0 is observed with frequency significantly higher 
such that it cannot be modeled by a Poisson or negative 
binomial models, thus the distribution is defined by

The second derivative is obtained as 
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 
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covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
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where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��

′�        30 

 
Satisfying the logit 

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
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��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��
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  the 

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
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��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
′� + ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑒𝑒��

′� + �𝑒𝑒��
′� + 1�

��
��

�:��� + �
��� ∑  �log �𝑒𝑒��

′� + 1 � +�:���

𝑦𝑦�𝑙𝑙𝑙𝑙𝑙𝑙 �1 +  𝑒𝑒��
′�� �          28 

where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��
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row of the  covariate matrix Z and 

The second derivative is obtained as 
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
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= ∑ 𝑍𝑍��𝛿𝛿�
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covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
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� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��
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 are the 
unknown m-dimensional column vector of parameters. 
The nonnegative function  is modeled through link 
function that allows  being negative may be used and 

The second derivative is obtained as 
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
�

�
�

∑ 𝑦𝑦�
��
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
       23 

Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
�
��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
���
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���
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
𝜔𝜔� + (1 − 𝜔𝜔�) � �

���
� , 𝑦𝑦� = 0

(1 − 𝜔𝜔�) � �
���

� � �
���

�
��

, 𝑦𝑦� ≥ 0
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
′� + ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑒𝑒��

′� + �𝑒𝑒��
′� + 1�

��
��

�:��� + �
��� ∑  �log �𝑒𝑒��

′� + 1 � +�:���

𝑦𝑦�𝑙𝑙𝑙𝑙𝑙𝑙 �1 +  𝑒𝑒��
′�� �          28 

where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��

′�        30 

 is the distribution defined as 

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
�

�
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∑ 𝑦𝑦�
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
�

�
�

∑ 𝑦𝑦�
��

���        22 

The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
       23 

Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
�
��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
���
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
𝜔𝜔� + (1 − 𝜔𝜔�) � �
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, 𝑦𝑦� ≥ 0
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
′� + ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑒𝑒��
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′�� �          28 

where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  

���
���

= �
∑ � ��

��(������)
𝑋𝑋��� , 𝑦𝑦 = 0�

���

∑ �1 − ����
����

� 𝑋𝑋�� , 𝑦𝑦 > 0�
���

         29 

���
���

= �
∑ ( −) � �

�����
′ �

+ �
������

  𝑍𝑍��� , 𝑦𝑦 = 0�
���

∑ � ��
����

𝑍𝑍��� , 𝑦𝑦 > 0�
���

        29 

Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��

′�        30 

 
We consider the zero-inf lation of the 3-Parameter 
Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution 

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
�
��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��
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The mean and variance are obtained as   
 

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
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= ∑ 𝑍𝑍��𝛿𝛿�
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��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
𝜔𝜔� + (1 − 𝜔𝜔�) � �

���
� , 𝑦𝑦� = 0

(1 − 𝜔𝜔�) � �
���

� � �
���

�
��

, 𝑦𝑦� ≥ 0
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
′� + ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑒𝑒��
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𝑦𝑦�𝑙𝑙𝑙𝑙𝑙𝑙 �1 +  𝑒𝑒��
′�� �          28 

where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��

′�        30 

Where 

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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∑ 𝑦𝑦�
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
�

�
�

∑ 𝑦𝑦�
��
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
�
��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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, 𝑦𝑦� ≥ 0
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��

′�        30 

 is the logit link function and 

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
�

�
�

∑ 𝑦𝑦�
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
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��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��
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 the exposure rate 
is modeled through the log link function defined below  

The second derivative is obtained as 
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����
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covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
���

� � �
���

�
��

       24 

We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
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� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��

′�        30 

where X are Z matrices of covariates and 

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
�

�
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
�
��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
���

� � �
���
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
𝜔𝜔� + (1 − 𝜔𝜔�) � �
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, 𝑦𝑦� ≥ 0
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��

′�        30 

are 
vectors of parameters. The two sets of covariates may or 
may not be the same. When they do, more parsimonious 
models may be developed by assuming that the two linear 
predictors are related in some way.

The Maximum Likelihood Estimation of equation 3.65 
is obtained as follows

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
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��

���        22 

The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
�
��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
���
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��

′�        30 

 
The first order derivative of 

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
�

�
�

∑ 𝑦𝑦�
��

���        21 

This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
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��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��
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with respect to the  

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
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The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
�
��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
���

� � �
���

�
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
𝜔𝜔� + (1 − 𝜔𝜔�) � �

���
� , 𝑦𝑦� = 0

(1 − 𝜔𝜔�) � �
���

� � �
���

�
��

, 𝑦𝑦� ≥ 0
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
′� + ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑒𝑒��

′� + �𝑒𝑒��
′� + 1�

��
��

�:��� + �
��� ∑  �log �𝑒𝑒��

′� + 1 � +�:���

𝑦𝑦�𝑙𝑙𝑙𝑙𝑙𝑙 �1 +  𝑒𝑒��
′�� �          28 

where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��

′�        30 

parameters was obtained as 
    

The second derivative is obtained as 

𝑙𝑙𝑙𝑙𝑙𝑙′′(𝛽𝛽|𝑌𝑌) = −𝑛𝑛(𝛽𝛽 + 1)� − ����
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This captures the steepness of the distribution around probability (𝑝𝑝). The Fisher information is the 
negation of the second derivative derived as: 

𝐽𝐽𝑛𝑛(𝛽𝛽) = −𝑙𝑙𝑙𝑙𝑙𝑙′′ = 𝑛𝑛(𝛽𝛽 + 1)� + ����
�

�
�

∑ 𝑦𝑦�
��

���        22 

The Zero-Inflation of the Proposed Reduced Model 

Let  𝑦𝑦� be a nonnegative values of a random variable and if y = 0 is observed with frequency significantly 
higher such that it cannot be modeled by a Poisson or negative binomial models, thus the distribution is 
defined by 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) =  �
𝜔𝜔� + (1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),     𝑦𝑦� = 0

(1 − 𝜔𝜔�)𝑓𝑓(𝑦𝑦� = 0),   𝑦𝑦� ≥ 0
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Where 𝑓𝑓(𝑦𝑦� = 0), 𝑦𝑦� = 0, 1, 2, … is the pdf of 𝑌𝑌� and 0 <𝜑𝜑� < 1.  The function 𝜔𝜔� = 𝜔𝜔�(𝑍𝑍�) 

Satisfying the logit (𝜑𝜑�) = 𝑙𝑙𝑙𝑙𝑙𝑙 ��
����

= ∑ 𝑍𝑍��𝛿𝛿�
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��� where 𝑍𝑍� = (𝑍𝑍��, 𝑍𝑍��, … , 𝑍𝑍��) the 𝑖𝑖𝑖𝑖ℎ row of the  

covariate matrix Z and 𝛿𝛿 = 𝛿𝛿�, 𝛿𝛿�, … , 𝛿𝛿�) are the unknown m-dimensional column vector of parameters. 
The nonnegative function 𝜔𝜔� is modeled through link function that allows 𝜔𝜔� being negative may be used 
and   𝑓𝑓(𝑦𝑦� = 0) is the distribution defined as  

𝑓𝑓(𝑦𝑦�) = Pr (𝑌𝑌� = 𝑦𝑦�/𝛼𝛼, 𝛽𝛽) = � �
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We consider the zero-inflation of the 3-Parameter Gamma-Poisson model in which the response variable 
Yi (i= 1, 2, …, n) has the distribution  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦�/𝑥𝑥�, 𝑧𝑧�) = �
𝜔𝜔� + (1 − 𝜔𝜔�) � �

���
� , 𝑦𝑦� = 0

(1 − 𝜔𝜔�) � �
���
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, 𝑦𝑦� ≥ 0
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The mean and variance are obtained as   

𝐸𝐸(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽� and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌�) = (1 − 𝜔𝜔�)𝛽𝛽�[(𝛽𝛽� + 1) + 𝜔𝜔𝛽𝛽]     26 

Where 𝜔𝜔� is the logit link function and 𝛽𝛽� the exposure rate is modeled through the log link function 
defined below   

log(𝛽𝛽�) = 𝑋𝑋𝑋𝑋 , and  logit � ��
����

� = 𝑍𝑍𝑍𝑍.        27 

where 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are matrices of covariates and 𝑋𝑋 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 are vectors of parameters. The two sets of 
covariates may or may not be the same. When they do, more parsimonious models may be developed by 
assuming that the two linear predictors are related in some way. 

The Maximum Likelihood Estimation of equation 3.65 is obtained as follows 

𝐿𝐿(𝑋𝑋, 𝑍𝑍, 𝑦𝑦, 𝑋𝑋, 𝑍𝑍) = ∑ �1 + 𝑒𝑒��
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where 𝑋𝑋 = (𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�) 𝑉𝑉𝑛𝑛𝑎𝑎 𝑍𝑍 = (𝑧𝑧�, 𝑧𝑧�, … , 𝑧𝑧�). 

The first order derivative of 𝐿𝐿� with respect to the 𝜃𝜃 = (𝑋𝑋, 𝑍𝑍)′ parameters was obtained as  
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Where 

𝛽𝛽� = 𝑒𝑒��
′�, 𝑉𝑉� = 𝛽𝛽� + 1, 𝑞𝑞 = 𝑒𝑒��
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The parameter estimation is done by BFGS algorithm 
adopted by Nocedal and Wright (pp190-202).  The BFGS 
is a quasi-Newton optimization technique which can be 
implemented in the Optim-R software package.

Density Plots
The density plots were obtained for the three-Parameter-
Gamma-Poisson Distribution by assigning different 
values to the parameter (β) of the model. The density 
plots were obtained as follows:
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decreases (RMSE →0) and as W increases the  RMSE 
also decreases ((RMSE →0).  

Table 3: RMSE the Proposed Reduced Model and the 
ZIG at  3

β=3 Model 20 50 100 200 50 1000

 ω = 0.1

ZIG 0.0845 0.0751 0.0549 0.03731 0.0244 0.0272

Proposed 0.0845 0.075 0.0541 0.03728 0.0243 0.0268

ω =0.25

ZIG 0.0810 0.0809 0.0598 0.0366 0.0263 0.0099

Proposed 0.0807 0.0806 0.0575 0.0356 0.026 0.0099

ω =0.5

ZIG 0.0834 0.0572 0.0432 0.02801 0.0185 0.0133

Proposed 0.0833 0.057 0.0428 0.0029 0.0185 0.01329

 ω =0.75

ZIG 0.0743 0.0719 0.0711 0.02131 0.0139 0.00985

Proposed 0.0743 0.0718 0.0710 0.02129 0.0129 0.00981

ω =0.9

ZIG 0.0537 0.0441 0.0382 0.0147 0.0086 0.00595

Proposed 0.0537 0.0441 0.0381 0.0139 0.0078 0.00539

Table 3 consists of root mean square error (RMSE) of 
the proposed reduced model and ZIG   when β=3. The 
result equally shows that as sample size increases, RMSE 
decreases (RMSE →0) and as   increases the RMSE also 
decreases ((RMSE →0). 

RMSE of the Proposed Reduced Model and ZINB
The Root Mean Square Error of the proposed reduced 
model and ZINB were obtained by setting  β=1,2 and 3 
and varying the size of W and n in the model.  The model 
fit was performed by R software and the RMSE were 
obtained and tabulated in tables 4.3.3.1 to 4.3.3.6 below.

Table 4: RMSE of the Proposed Reduced Model and 
ZINB at β=1

Weight 
(W)

β=1
Model 20 50 100 200 500 1000

 ω = 0.1

ZINB 0.2437 0.1903 0.1407 0.1022 0.0630 0.0451

Proposed 0.2437 0.1882 0.1405 0.1018 0.0628 0.0443

 ω =0.25

ZINB 0.2386 0.1785 0.1244 0.0900 0.0573 0.0404

Proposed 0.2386 0.1783 0.1223 0.0882 0.0572 0.0400

 ω =0.5

ZINB 0.2262 0.1547 0.1059 0.0782 0.0501 0.0351

Proposed 0.2262 0.1541 0.1043 0.0781 0.0489 0.0348

 ω =0.75

ZINB 0.1826 0.1409 0.0784 0.0559 0.0367 0.0258

Proposed 0.1826 0.1409 0.0782 0.0558 0.0366 0.0242

 ω =0.9

ZINB 0.1545 0.1201 0.0638 0.0286 0.0228 0.0157

Proposed 0.1545 0.1199 0.0621 0.0277 0.0219 0.0149

Table 4 consists of root mean square error (RMSE) of 
the zero-inflated Negative Binomial (ZINB) and the 
proposed reduced model at β=1. However, the RMSEs 
of the proposed reduced model   were smaller to that of 
ZINB as the sample size increases from 50 to 1000.

RMSE of the proposed reduced model and ZIG

The Root Mean Square Error of the proposed reduced 
model and the (ZIG) were obtained by setting  and 
varying the size of  and n in the model. The model fit was 
performed by R software and the RMSE were obtained 
and tabulated in tables 4.1to 4.3 below.

Table 1:  RMSE the Proposed Reduced Model and the 
ZIG at β=1 

β=1 Model n=20 n=50 n=100 n=200 n=500 n=1000

W = 0.1

ZIG 0.04281 0.07565 0.05432 0.03804 0.02310 0.01681

Proposed 0.04281 0.07563 0.05414 0.03765 0.02291 0.01672

W=0.25

ZIG 0.03891 0.07047 0.04981 0.03509 0.02231 0.01566

Proposed 0.03890 0.07044 0.0972 0.03488 0.02217 0.01548

W=0.5

ZIG 0.02634 0.04471 0.04033 0.02964 0.01890 0.01259

Proposed 0.02634 0.04456 0.04010 0.02951 0.01973 0.01237

W=0.75

ZIG 0.03931 0.03485 0.02794 0.02092 0.01335 0.00988

Proposed 0.03931 0.03482 0.02787 0.02078 0.01321 0.00972

W=0.9

ZIG 0.04253 0.03858 0.02923 0.01822 0.0088 0.0059

Proposed 0.04253 0.03858 0.02911 0.01811 0.0074 0.0038

Table 1 consists of root mean square error of zero-inflated 
Geometric (ZIG) and the proposed reduced model. At 
β=1 at different levels of zero fractions (ω). However, the 
RMSEs of the proposed  model were smaller to that of 
ZIG as the sample size increases from 100 to 1000. The 
result equally shows that as sample size increases, RMSE 
decreases (RMSE) →0 and as  increases the  RMSE also 
decreases ((RMSE). 

Table 2: RMSE the Proposed Reduced Model and the 
ZIG at β=2

β=2 Model 20 50 100 200 50 1000

 ω = 0.1

ZIG 0.8241 0.7565 0.0527 0.0373 0.0229 0.0169

Proposed 0.8241 0.7562 0.0521 0.0369 0.0221 0.0168

ω =0.25

ZIG 0.0760 0.0667 0.0499 0.0371 0.0219 0.0159

Proposed 0.0760 0.0652 0.0491 0.0370 0.0218 0.0148

ω =0.5

ZIG 0.0575 0.0468 0.0404 0.0296 0.0179 0.0133

Proposed 0.0575 0.0466 0.0403 0.0277 0.0179 0.0132

 ω =0.75

ZIG 0.0492 0.0431 0.0398 0.0211 0.0131 0.0094

Proposed 0.0492 0.0427 0.0397 0.0209 0.0130 0.0091

ω =0.9

ZIG 0.0583 0.0402 0.0321 0.0109 0.0084 0.0061

Proposed 0.0583 0.0402 0.0319 0.0107 0.0067 0.0052

Table 2 consists of root mean square error of the ZIG and 
the proposed reduced model. At  β=2t the RMSEs of the 
proposed reduced model were smaller to that of ZIG as 
the sample sizes increases from 100 to 1000.The result 
equally shows that as sample sizes increases, RMSE 
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The result equally shows that as sample size increases, 
RMSE decreases (RMSE →0) and as ω increases the 
RMSE also decreases ((RMSE →0). 

Table 5: RMSE of the Proposed Reduced Model and 
ZINB at β=2

Weight 
(W)

β=2
Model 20 50 100 200 500 1000

 ω = 0.1

ZINB 0.3062 0.1992 0.1378 0.0990 0.0639 0.0448

Proposed 0.3062 0.1989 0.1364 0.0981 0.0633 0.0439

ω =0.25

ZINB 0.2273 0.1771 0.1345 0.1089 0.0584 0.0402

Proposed 0.2273 0.1769 0.1342 0.1078 0.0582 0.0402

ω =0.5

ZINB 0.1736 0.1603 0.1055 0.0738 0.0478 0.0343

Proposed 0.1736 0.1584 0.1049 0.0737 0.0478 0.0342

 ω =0.75

ZINB 0.0389 0.0531 0.0779 0.0566 0.0351 0.0257

Proposed 0.0389 0.0530 0.0776 0.0564 0.0350 0.0256

ω =0.9

ZINB 0.0342 0.0325 0.0300 0.0280 0.0233 0.0165

Proposed 0.0321 0.0312 0.0310 0.0269 0.0232 0.0159

Table 5 consists of root mean square error (RMSE) of 
the zero-inflated Negative Binomial (ZINB) and the 
proposed reduced model at β=2. Likewise, the RMSEs 
of the proposed reduced  model were smaller to     that 
of ZINB as the sample size increases 1000. The result, 
in summary, equally shows that as sample size increases, 
RMSE decreases (RMSE →0) and as W (proportion of 
zeros) increases the RMSE also decreases ((RMSE →0). 

Table 6: RMSE of the Proposed Reduced model and 
ZINB at β=3

Weight 
(W)
β=3

Model 20 50 100 200 50 1000

 ω = 0.1

ZINB 0.2242 0.2131 0.1315 0.1003 0.06571 0.04246

Proposed 0.2237 0.2032 0.1315 0.1003 0.0644 0.04023

ω =0.25

ZINB 0.2022 0.2021 0.1297 0.09073 0.0583 0.04012

Proposed 0.201 0.2 0.1286 0.09701 0.0583 0.04012

ω =0.5

ZINB 0.1679 0.1578 0.1089 0.07748 0.0497 0.01324

Proposed 0.1643 0.1578 0.1089 0.07746 0.0493 0.01329

 ω =0.75

ZINB 0.1203 0.09955 0.08351 0.05738 0.0351 0.02439

Proposed 0.1203 0.09955 0.0835 0.05729 0.0351 0.02429

ω =0.9

ZINB 0.0482 0.0734 0.0511 0.0363 0.0235 0.0424

Proposed 0.0482 0.0733 0.0508 0.036 0.0234 0.04118

Table 6 consists of root mean square error (RMSE) of 
the zero-inflated Negative Binomial (ZINB) and the 
proposed reduced model at β=3. However, the result 
equally shows that as sample sizes increases, RMSE 
decreases (RMSE→0)) and as W (proportion of zeros) 
increases the RMSE also decreases ((RMSE→0)). 

RMSE of Proposed Reduced model and ZIP
The Root Mean Square Error of the proposed reduced 
Model and ZIP were obtained by setting β=1,2 and 3  and 
varying the size of W and n in the model.  The model 
fit was performed by R software and the RMSE were 
obtained and tabulated in tables 7-9 below.

Table 7: RMSE of the proposed Reduced Model and 
ZIP at β=1

 Weight 
(W)
β=1

Model 20 50 100 200 500 1000

 ω = 0.1

ZIP 0.1855 0.1239 0.0877 0.0643 0.0394 0.0274

Proposed 0.1855 0.1237 0.0875 0.0632 0.0392 0.0272

ω =0.25

ZIP 0.1616 0.1188 0.0824 0.6136 0.0370 0.0263

Proposed 0.1616 0.1183 0.0823 0.0611 0.0368 0.0261

ω =0.5

ZIP 0.1569 0.1059 0.0718 0.0533 0.0342 0.0244

Proposed 0.1569 0.1058 0.0717 0.0531 0.0341 0.0242

 ω =0.75

ZIP 0.0895 0.0825 0.0552 0.0407 0.0245 0.0179

Proposed 0.0895 0.0821 0.0551 0.0405 0.0226 0.0177

ω =0.9

ZIP 0.0900 0.0589 0.0432 0.0264 0.0166 0.0117

Proposed 0.0900 0.0589 0.0432 0.0249 0.0145 0.0115

Table 7 consists of root mean square error (RMSE) of 
the zero-inflated Poisson (ZIP) and the proposed reduced 
model at β=1.  However, the result equally shows that as 
sample sizes increases, RMSE decreases (RMSE→0) 
and as W (proportion of zeros) increases the RMSE also 
decreases ((RMSE→0). 

Table 8: RMSE of the proposed Reduced Model and 
ZIP at β=2

Weight 
(W)
β=3

Model 20 50 100 200 500 1000

 ω = 0.1

ZIP 0.1939 0.1239 0.0878 0.0642 0.0396 0.0290

Proposed 0.1939 0.1238 0.0874 0.0664 0.0395 0.0276

ω =0.25

ZIP 0.1798 0.1470 0.0861 0.0718 0.0367 0.0264

Proposed 0.1798 0.1470 0.0855 0.0715 0.0367 0.0264

ω =0.5

ZIP 0.1412 0.1041 0.0827 0.0574 0.0289 0.0256

Proposed 0.1412 0.1031 0.0826 0.0262 0.0276 0.0251

 ω =0.75

ZIP 0.0813 0.0721 0.0566 0.0401 0.0256 0.0174

Proposed 0.0813 0.0719 0.0565 0.0382 0.0243 0.0164

ω =0.9

ZIP 0.0722 0.0538 0.0312 0.0210 0.0165 0.0114

Proposed 0.0722 0.0538 0.0311 0.0202 0.0162 0.0101

Table 8 consists of root mean square error (RMSE) of 
the zero-inflated Poisson (ZIP) and the proposed reduced 
model at β=2. The result equally shows that as sample 
sizes increases, RMSE decreases (RMSE→0) and as ω 
(proportion of zeros) increases the RMSE also decreases 
((RMSE→0).        
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Table 9: RMSE of the proposed Reduced Model and 
ZIP at β=3

Weight
(W)
β=3

Model 20 50 100 200 500 1000

 ω = 0.1

ZIP 0.1338 0.1214 0.0876 0.06048 0.0387 .02722

Proposed 0.1332 0.1209 0.0870 0.06047 .0387 0.0272

ω =0.25

ZIP 0.1406 0.1499 0.0814 0.06421 0.0375 0.0263

Proposed 0.1398 0.1496 0.0814 0.06418 0.0373 0.0244

ω =0.5

ZIP 0.0766 0.1061 0.0756 0.05198 0.0338 0.0246

Proposed 0.0765 0.1046 0.0749 0.05188 0.0335 0.0239

 ω =0.75

ZIP 0.0754 0.0725 0.0566 0.03975 0.0265 0.0178

Proposed 0.07538 0.0725 0.05651 0.03973 0.0265 0.01759

ω =0.9

ZIP 0.0557 0.0432 0.0363 0.02709 0.0164 0.01184

Proposed 0.0553 0.0428 0.0339 0.02636 0.0164 0.01092

Table 9 consists of the root mean square error (RMSE) of 
the zero-inflated Poisson (ZIP) and the proposed reduced 
model at β=3. However, the result equally shows that as 
sample sizes increases, RMSE decreases (RMSE→0) 
and as ω (proportion of zeros) increases the RMSE also 
decreases ((RMSE→0).

Model with covariates
The proposed reduced model was fitted to four simulated 
covariates x1,x2,x3 and x4 generated from NB (n, 0.25, 
0.5), B(n, 0.5),  P(0.5) and N(4, 2) respectively.Model 
validity was carried out by deriving the AIC, BIC, the 
Mean Absolute Bias and the Root Mean Square Error 
(RMSE). 

AIC, BIC and Mean Absolute Bias

Table 10:  AIC at β=1,ω=0.9
Model 20 50 100 200 500 1000

ZIG   42.314 55.515  90.938  90.939 351.543 562.399

ZIP  40.209 54.937  91.472  91.473 351.790 558.869

ZINB 50.209 64.937 100.751 100.752 361.220 568.867

Reduced   
Model

42.414 55.525  90.886  90.671 348.421 560.453

Table 10 presents the AIC of the proposed reduced model 
at β=1,W=0.1 and that of the ZIG, ZIP and ZINB. The 
proposed model reduced has least AIC at sample 100 
and above when compared to the other three models. 
This shows that the proposed model performed better 
at higher sample size than at lower sample based on the 
AIC model validation procedure.

Table 11: BIC at β=1,ω=0.9
Model 20 50 100 200 500 1000

ZIG   26.9194 40.12028 75.5438 113.244 336.148 547.005

ZIP  24.8144 39.54242 76.0781 112.554 336.396 543.475

ZINB 27.1172 41.8451 77.6596 114.856 338.128 545.778

Proposed Model 27.0194 40.22328 75.3317 113.143 336.063 543.003

Table 11 presents the BIC of the proposed reduced model 
at β=1,W=0.1 and that of the ZIG, ZIP and ZINB. The 
proposed reduced model has least BIC at sample 100 
and above when compared to the other three models. 
For instance, at sample size 20, the BIC of 3GP was 
27.01941 indicating the least when compared with other 
three models. Also at sample size 100, 500 and 1000, 
the BIC of the proposed reduced model were 75.3317, 
336.0628 and 543.0032 respectively, these were least 
when compared to the other three models. This shows 
that the proposed model performed better at higher 
sample size than at lower sample based on the BIC model 
validation procedure.

The Mean Absolute Bias of the Models

Table 12: Mean Absolute Bias (MAB) β=1,ω=0.1

Sample

Zero-
Inflated 
Geometric

Zero-
Inflated

Zero-
Inflated NB Proposed 

(Reduced 
Model)

 
(ZIG)

Poisson
(ZIP)

(ZINB)
 

20 0.7204 0.2667 0.2837 0.1987

50 0.7413 0.7773 0.7762 0.5688

100 0.7702 0.7467 0.7241 0.5798

200 0.7252 0.7575 0.7221 0.5696

500 0.7097 0.7694 0.76 0.5526

1000 0.7508 0.7975 0.7974 0.5973

Table 12: presents the mean absolute bias (MAB) of 
the proposed reduced model and that of the other three 
models at varied sample sizes and at  β=1,W=0.1 . The 
mean absolute bias (MAB) of the proposed reduced 
model was compared with the ZIG, ZIP and ZINB and 
was found to be relatively better across sample sizes as 
the MABs were the least when compared to others. For 
instance at n = 20 the MAB of the proposed model was 
0.1987 and was least compared to other models. Also 
at n = 100 and 1000, the MAB of the proposed model 
was 0.5798 and 0.5973 respectively and were the least 
compared to other models. 
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Table 13: Mean Absolute Bias (MAB) β=1 ,ω=0.5

Sample

Zero-
Inflated 
Geometric

Zero-
Inflated

Zero-
Inflated NB Proposed 

(Reduced 
Model)

(ZIG)
 

Poisson
(ZIP)

(ZINB)
 

20 0.7202 0.2668 0.2833 0.1983

50 0.7411 0.7768 0.7761 0.5688

100 0.77 0.7464 0.7238 0.5799

200 0.7249 0.7571 0.7218 0.5701

500 0.7093 0.7691 0.7602 0.5532

1000 0.7508 0.7972 0.7968 0.5971

Table 13 presents the mean absolute bias (MAB) at β=1 
,W=0.5 of the proposed reduced model and that of the 
other three models at varied sample sizes and the results 
indicate that the MAB of the proposed model was least 
compared with other three models. For instance at sample 
size 20, the MAB was 0.1983 and at sample size 500, the 
MAB was 0.5532. Therefore based on the MAB criterion, 
the proposed model is adjudged better in modelling both 
zero-inflation and zero deflation. 

Table 14: Mean Absolute Bias (MAB) β=1,ω=0.9

Sample

Zero-
Inflated 
Geometric

Zero-
Inflated

Zero-Inflated 
NB Proposed 

(Reduced 
Model)(ZIG)

 
Poisson
(ZIP)

(ZINB)
 

20 0.6463 0.6625 0.5575 0.4457

50 0.7225 0.7785 0.7785 0.5868

100 0.7798 0.7284 0.7785 0.6235

200 0.7521 0.7988 0.7584 0.6569

500 0.745 0.7859 0.7392 0.7731

1000 0.7537 0.785 0.785 0.7474

Table 14 presents the mean absolute bias (MAB) at 
β=1,ω=0.9 of the proposed reduced model and that of 
the other three models at varied sample sizes and the 
results indicate that the MAB of the proposed model 
was least compared with other three models in all sample 
sizes. For instance at sample size 20, the MAB was 
0.4457 and at sample size 500, the MAB was 0.7731. 
Therefore based on the MAB criterion, the proposed 
model is adjudged better in modelling both zero-inflation 
and zero deflation. 

Table 15: Mean Absolute Bias (MAB) β=2,ω=0.1

MODEL

Zero-
Inflated 
Geometric 
(ZIG)

Zero-
Inflated

Zero-
Inflated NB Proposed 

Reduced 
ModelPoisson

(ZIP)
(ZINB)
 

20 1.3646 2.0693 2.0693 0.2428

50 1.8832 1.0265 1.4195 0.1286

100 1.0047 2.5128 7.4779 0.0609

200 1.1909 0.1572 8.2415 0.0679

500 1.8676 0.0513 0.0861 0.1121

1000 0.2426 0.0602 0.1048 0.0556

Table 15 presents the mean absolute bias (MAB) at 
β=2,W=0.1 of the proposed reduced model and that of the 
other three models at varied sample sizes and the results 
indicate that the MAB of the proposed model was least 
compared with other three models in all sample sizes. 
For instance at sample size 20, the MAB was 0.2428 and 
at sample size 1000, the MAB was 0.0556. However, 
at sample size 500, the MAB of ZIP and ZINB were 
the least. Therefore based on the MAB criterion, the 
proposed model is adjudged better in modelling both 
zero-inflation and zero deflation. 

Table 16: Mean Absolute Bias (MAB) β=2,ω=0.5

MODEL

Zero-
Inflated 
Geometric 
(ZIG)

Zero-
Inflated

Zero-
Inflated NB Proposed 

Reduced 
Model

Poisson
(ZIP)

(ZINB)
 

20 4.6565 7.1699 0.9367 0.2781

50 9.2431 1.0265 1.4195 0.2783

100 2.4553 89.1412 87.4779 0.0437

200 1.092 0.1012 0.2743 0.1431

500 7.8676 0.0513 0.0963 0.1121

1000 0.0651 0.0989 0.0879 0.0556

Table 17 presents the mean absolute bias (MAB) at 
β=2,ω=0.5 of the proposed reduced model and that of 
the other three models at varied sample sizes. The results 
indicate that the MAB of the proposed model was least 
compared with other three models in all sample sizes. For 
instance at sample size 20, the MAB was 0.0.2781 and at 
sample size 500, the MAB was 0.1121. Therefore based 
on the MAB criterion, the proposed `model is adjudged 
better in modelling both zero-inflation and zero deflation. 
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Table 18: Mean Absolute Bias (MAB) β=2,ω=0.5 

Model
Zero-Inflated 

Geometric 
(ZIG)

Zero-Inflated Zero-Inflated 
NB Propose Reduced 

Model
Poisson
(ZIP)

(ZINB)
 

15 0.2002 0.0226 0.0682 0.1668

25 1.3646 2.0693 1.2543 0.2428

50 1.8832 1.0265 1.4195 0.1286

100 1.0047 2.5128 1.4779 0.0609

150 0.4193 0.2745 0.5872 0.0355

300 1.1909 0.1572 1.2415 0.0679

500 1.8676 0.0513 0.0861 0.0121

1000 0.2426 0.0602 0.1048 0.0556

 
Table 17 presents the mean absolute bias (MAB) at 
β=2,ω=0.5 of the proposed reduced model and that of 
the other three models at varied sample sizes. The results 
indicate that the MAB of the proposed model was least 
compared with other three models in all sample sizes. For 
instance at sample size 20, the MAB was 0.0.2781 and at 
sample size 500, the MAB was 0.1121. Therefore based 
on the MAB criterion, the proposed `model is adjudged 
better in modelling both zero-inflation and zero deflation. 

Table 19: Mean Absolute Bias (MAB) β=3,ω=0.1

MODEL

Zero-
Inflated 

Geometric 
(ZIG)

Zero-
Inflated

Zero-
Inflated NB Proposed 

Reduced 
ModelPoisson

(ZIP)
(ZINB)

 

20 0.5096 3.955 2.2284 0.0132

50 1.6561 1.2033 11.4939 0.1027

100 1.4553 1.9623 12.9456 0.043

200 1.2171 1.1903 1.476 0.1399

500 1.6103 0.255 0.4893 0.0835

1000 1.6674 0.7709 1.341 0.04

Table 19 presents the mean absolute bias (MAB) at 
β=3,ω=0.1 of the proposed model (3GP) and that of the 
other three models at varied sample sizes. The results 
indicate that the MAB of the proposed model was least 
compared with other three models in all sample sizes. For 
instance at sample size 20, the MAB was 0.0132 and at 
sample size 500, the MAB was 0.0835. Therefore based 
on the MAB criterion, the proposed model is adjudged 
better in modelling both zero-inflation and zero deflation. 

Table 20: Mean Absolute Bias (MAB) β=3,ω=0.5

MODEL

Zero-
Inflated 

Geometric 
(ZIG)

Zero-
Inflated

Zero-
Inflated NB Proposed 

Reduced 
ModelPoisson

(ZIP)
(ZINB)

 

20 0.1045 0.0908 0.1284 0.0078

50 0.0881 0.1898 0.028 0.0791

100 0.0524 0.1251 0.227 0.0904

200 0.1292 0.1499 0.121 0.0529

500 0.0817 0.0396 0.0886 0.0979

1000 0.13 0.0794 0.0613 0.0057

Table 20 presents the mean absolute bias (MAB) at 
β=3,ω=0.5 of the proposed reduced model and that of 
the other three models at varied sample sizes. The results 
indicate that of the proposed reduced Model model was 
least compared with other three models in all sample 
sizes. For instance at sample size 20, the MAB was 
0.0078 and at sample size 500, the MAB was 0.0979. 
Therefore based on the MAB criterion, the proposed 
model is adjudged better in modelling both zero-inflation 
and zero deflation. 

Table 21: Mean Absolute Bias (MAB) β=3,ω=0.9

MODEL
Zero-Inflated 

Geometric 
(ZIG)

Zero-Inflated Zero-
Inflated NB Proposed 

Reduced 
Model

Poisson
(ZIP)

(ZINB)
 

20 0.1045 0.0908 0.1321 0.0107

50 0.0881 0.0891 0.03 0.0481

100 0.0434 0.0521 0.146 0.0304

200 0.1302 0.1499 0.121 0.0621

500 0.0817 0.0396 0.086 0.0734

1000 0.132 0.0794 0.061 0.0572

Table 21 presents the mean absolute bias (MAB) at 
β=3,ω=0.9 of the proposed reduced model and that of 
the other three models at varied sample sizes. The results 
indicate that the MAB of the proposed model was least 
compared with other three models in all sample sizes 
except at sample size 50 where the MAB of ZINB was 
the least. For instance at sample size 20, the MAB was 
0.0107 and at sample size 500, the MAB was 0.0572. 
Therefore based on the MAB criterion, the proposed 
reduced model is adjudged better in modelling both 
zero-inflation and zero deflation. 
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Application of the Proposed Model to Number of 
Under-Five Death in Nigeria

A The Dataset

The study uses data from a set of Demographic and 
Health Surveys (DHS) that were carried out in Nigeria 
in 2008. Over the years, the DHS project has offered 
technical support to surveys in a number of developing 
nations, enhancing understanding of demographic and 
health patterns worldwide. To help survey processes, 
ensuring that the data accurately represent the settings 
they are intended to depict, and to make sure that they are 
comparable between nations and across time, DHS has 
created standard protocols, methodology, and manuals. 
The population and housing censuses carried out by the 
various agencies and commissions given such authority 
by the respective country constitutions served as the basis 
for the sampling frames employed for the surveys. The 
enumeration areas (EAs) from the Census frames served 
as the foundation for defining the primary sampling units. 
The typical method for choosing DHS samples is a two-
stage stratified design. At the second stage, the selection 
of the households was done once the numbers of clusters 
had been chosen from the list of EAs.

Model Fitting to Child-Mortality dataset
The under-five deaths dataset was fitted to the proposed 
model and other three zero-inflated models; 2GP, ZINB 
and ZIP and the RMSE and the absolute Bias of the 
models’ parameters were compared   in order to suggest 
a model of good-fit.

Table 22: The Mean and RMSE of the proposed models 
and the existing models to the child-mortality dataset

Weight Parameter
Proposed 
Reduced 

Model
ZIG ZINB ZIP

 Mean 0.2213 0.2213 0.75 0.72

W = 0.1 RMSE 0.0265 0.028 0.0915 0.0419

 Mean 0.182 0.182 0.595 0.6167

W=0.25 RMSE 0.0369 0.0388 0.0825 0.0648

 Mean 0.121 0.121 0.426 0.381

W=0.5 RMSE 0.0246 0.0259 0.074 0.0535

 Mean 0.0625 0.0663 0.2033 0.1887

W=0.75 RMSE 0.0163 0.0177 0.0428 0.0406

 Mean 0.025 0.0253 0.076 0.0521

W=0.9 RMSE 0.01028 0.0103 0.0402 0.0251

Table 22, presents the mean and the RMSE of the 
proposed reduced model , the ZIG, ZINB and ZIP The 
result indicated that at W=0.1 the mean of the proposed 

reduced  model equal the  mean of  ZIG but different from 
the mean of the ZINB and ZIP. However, the RMSE of 
the proposed reduced model was lesser than the RMSEs 
of the ZIG, ZINB and ZIP. The result further showed that 
at W=0.25, the mean of the proposed reduced model equal 
the mean of the ZIG but different from the mean of ZINB 
and ZIP. The RMSE of the proposed reduced model was 
equally lesser than the RMSEs of the ZIG, ZINB and ZIP. 
At W=0.5, the mean of the proposed reduced model equal 
that   of ZIG but also different from the other models, the 
RMSE of the proposed reduced was lesser that the rest 
models. Highlights of the result revealed that at W=0.75, 
the mean of the proposed reduced   model approximate 
the mean of the ZIG but different from the mean of the 
rest models. However, the RMSE of the proposed reduced 
model was lesser than the RMSE of the existing models. 
Finally, at W=0.9, the mean of the  proposed model 
was equal to the mean of ZIG while the RMSE of the  
proposed reduced model was lesser than the RMSEs of 
ZP, ZINB and ZIG. The deduction from these results is 
that the proposed reduced model outperformed the ZIG, 
ZINB and ZIP. 

The Expected Frequencies of the models’ Parameter

In this section we generate the expected frequencies from 
the fitted models; the proposed reduced model, ZIG, 
ZINB and ZIP. The expected frequencies are tabulated 
bellow:

Table 23: Expected Frequencies of the Models
Model 0 1 2 3 4 5 Total  χ^2 P<0.05

Observed 105093 12141 1843 249 60 0 119386   

Proposed 104728 12841 1594 198 23 2 119386 152.985 0.00001

ZIG 104488 13036 1645 188 25 4 119386 161.575 0.00001

ZINB 104623 14251 421 83 7 1 119386 5851.853 0.00001

ZIP 103851 14051 1309 150 15 10 119386 702.669  
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Table 24: Percentage Expected Predictions by the Models 
Model 0 1 2 3 4 5 Total

Observed (%) 88.03 10.17 1.54 0.21 0.05 0 100

Proposed Reduced Model 87.72 10.76 1.34 0.17 0.02 0 100

ZIG 87.52 10.92 1.38 0.16 0.02 0 100

ZINB 87.63 11.94 1.41 0.25 0.02 0.01 100

ZIP 86.99 11.77 1.22 1.22 0.01 0.01 100

Table 23 and 24; present the expected frequencies and 
percentage predicted values by the proposed model 
reduced, 2GP, ZINB, and ZIP respectively. The total 
observed zeros was 105093 (88.03%) of the 119386 
(100%) total number of child death, the proposed model 
predicted 104728 (87.72%) total zeros, 2GP predicted 
104488 (87.52%) total zeros, ZINB predicted a total zero 
frequencies of 104623 (87.63%) and ZIP predicted total 
zero frequencies of 103851 (86.99%). The proposed 3GP 
model has the least Chi-square value of 152.985 with 
p=0.00001(p<0.05) is said to provide a better fit even 
though other models also fitted well into the data with 
each having probability value less than 0.05.  

Absolute Bias of the Models Parameters

Table 25: Absolute Bias of the Models’ Parameters

Parameters
Proposed 
Reduced 

Model
ZIP ZINB ZIG

Intercept 0.58 2.21 7.84 2.46

Child is alive 0.17 0.22 3.67 2.03

Mother’s age 0.03 0.1 0.27 5.44

Region 0.05 0.07 0.06 2.03

Religion 0.36 0.23 0.18 4.26

Birth place 0.3 0.78 3.5 2.46

Highest education 0.06 0.45 0.82 2.03

Water Source 0.22 0.35 1.02 5.44

Wealth index 0.07 0.33 0.38 4.26

Total number of 
children 1.42 2.3 8.28 2.46

Visits 0.24 0.12 1.47 2.03

Smoking 0.12 0.08 1.28 5.44

Table 25, presents the absolute bias of the models’ 
parameters. The results indicate that the absolute bias 
of the proposed reduced model was the least under the 
following parameters; intercept, child is alive, mothers’ 
age, region, place of birth, mother’s highest education, 
water source, wealth index   total number of children in 
the household, number of visit during antenatal care and 
smoking behaviour of the mother. The results are showed 
that the proposed reduced model provides a better fit to 

the number of deaths per household within the study 
population.

DISCUSSION ON FINDINGS
The results generated from the simulation studies and real 
data from the proposed reduced model and the existing 
models provided great insight on the strength of the 
proposed reduced model at different level of parameters 
against the existing models; the ZIG, ZINB and ZIP. The 
results on the Root Mean Square Error show that the 
proposed reduced model is asymptotically consistent as 
sample size increases from 20 to 1000. The results also 
show that the proposed reduced model outperformed 
the ZIG, ZINB and ZIP at both zero-inflation and 
zero deflation and at some sample points. The Alkaike 
information criterion (AIC) and indicated that the 
proposed reduced model outperformed the ZIG, ZINB 
and ZIP at some sample points. At sample point 20 the 
proposed reduced model outperformed ZINB, however, 
at sample points 100 and above, the proposed reduced 
model outperformed ZIG, ZINB and ZIP. Similarly, the 
results from the Bayesian Information criterion (BIC) 
show that the proposed reduced model outperformed the 
ZINB at sample size 20 and 50. However, at sample size 
100 and above the proposed reduced model outperformed 
ZIG, ZINB and ZIP.

The results from the mean absolute bias (MAB), at 
different levels of parameters indicated that the proposed 
reduced model outperformed the ZIG, ZINB and ZIP 
with least MAB when compared with ZIG, ZINB and 
ZIP at different sample points. The results from the 
analysis of the empirical data indicated that the proposed 
reduced model and ZIG have similar RMSE at different 
levels of zero-inflation parameters. The ZINB and ZIP 
also showed similar RMSE at different zero-inflation 
parameters. The results from the expected frequencies 
from the fitted distributions showed that the proposed 
reduced model gave the highest prediction of zeros 
closed to the observed frequency compared to ZIG, 
ZINB and ZIP. The chi-square value of the proposed 
model (χ^2=152.9815) was the minimum compared to 
chi-square values of ZIG, ZINB and ZIP. Similarly out 
of 88.03% zeros present in the original data, the proposed 
reduced model predicted 87.72%, ZIG predicted 87.52%, 
ZINB and ZIP predicted 87.63% and 86.99% respectively. 

CONCLUSION
The new reduced model is a zero-inflated model and has 
proven to adequately fit into count data with excess zero 
which result in over-dispersion than some standard zero-
inflated counts models. It also shown that at zero deflation, 
the model performed comparatively well alongside the 
standard count models. This model is recommended for 
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both under-, moderately and over-dispersed count data 
and count data with over 90% excess zeros. 
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